Рукопожатие tcp. Транспортный уровень

Установка TCP-соединения

В протоколе TCP-соединения устанавливаются с помощью «тройного рукопожатия», описанного в разделе «Установка соединения». Чтобы установить соединение, одна сторона (например, сервер) пассивно ожидает входящего соединения, выполняя примитивы LISTEN и ACCEPT, либо указывая конкретный источник, либо не указывая его.

Другая сторона (например, клиент) выполняет примитив CONNECT, указывая IP-адрес и порт, с которым он хочет установить соединение, максимальный размер TCP-сегмента и, по желанию, некоторые данные пользователя (например, пароль). Примитив CONNECT посылает TCP-сегмент с установленным битом SYN и сброшенным битом АСК и ждет ответа.

Когда этот сегмент прибывает в пункт назначения, TCP-сущность проверяет, выполнил ли какой-нибудь процесс примитив LISTEN, указав в качестве параметра тот же порт, который содержится в поле Порт получателя. Если такого процесса нет, она отвечает отправкой сегмента с установленным битом RST для отказа от соединения.

Если какой-либо процесс прослушивает какой-либо порт, то входящий ТСР-сегмент передается этому процессу. Последний может принять соединение или отказаться от него. Если процесс принимает соединение, он отсылает в ответ подтверждение. Последовательность TCP-сегментов, посылаемых в нормальном случае, (рис. а) Обратите внимание на то, что сегмент с установленным битом SYN занимает 1 байт пространства порядковых номеров, что позволяет избежать неоднозначности в их подтверждениях.

Если два хоста одновременно попытаются установить соединение друг с другом, то последовательность происходящих при этом событий будет соответствовать рис. б. В результате будет установлено только одно соединение, а не два, так как пара конечных точек однозначно определяет соединение. То есть если оба соединения пытаются идентифицировать себя с помощью пары (х, у), делается всего одна табличная запись для (х, у).

Начальное значение порядкового номера соединения не равно нулю по обсуждавшимся выше причинам. Используется схема, основанная на таймере, изменяющем свое состояние каждые 4 мкс. Для большей надежности хосту после сбоя запрещается перезагружаться ранее чем по прошествии максимального времени жизни пакета. Это позволяет гарантировать, что ни один пакет от прежних соединений не бродит где-нибудь в Интернете.

Разрыв соединения TCP

Хотя TCP-соединения являются полнодуплексными, чтобы понять, как происходит их разъединение, лучше считать их парами симплексных соединений. Каждое симплексное соединение разрывается независимо от своего напарника. Чтобы разорвать соединение, любая из сторон может послать TCP-сегмент с установленным в единицу битом FIN, что означает, что у него больше нет данных для передачи. Когда этот TCP-сегмент получает подтверждение, это направление передачи закрывается. Тем не менее, данные могут продолжать передаваться неопределенно долго в противоположном направлении. Соединение разрывается, когда оба направления закрываются. Обычно для разрыва соединения требуются четыре TCP-сегмента: по одному с битом FIN и по одному с битом АСК в каждом направлении. Первый бит АСК и второй бит FIN могут также содержаться в одном ТСР-сегменте, что уменьшит количество сегментов до трех.

Как при телефонном разговоре, когда оба участника могут одновременно попрощаться и повесить трубки, оба конца TCP-соединения могут послать FIN-cerменты в одно и то же время. Они оба получают обычные подтверждения, и соединение закрывается. По сути, между одновременным и последовательным разъединениями нет никакой разницы.

Чтобы избежать проблемы двух армий, используются таймеры. Если ответ на посланный FIN-сегмент не приходит в течение двух максимальных интервалов времени жизни пакета, отправитель разрывает соединение. Другая сторона в конце концов заметит, что ей никто не отвечает, и также разорвет соединение. Хотя такое решение и не идеально, но, учитывая недостижимость идеала, приходится пользоваться тем, что есть. На практике проблемы возникают довольно редко.

Управление передачей в TCP

Как уже было сказано ранее, управление окном в TCP не привязано напрямую к подтверждениям, как это сделано в большинстве протоколов передачи данных. Например, предположим, что у получателя есть 4096-байтовый буфер. Если отправитель передает 2048-байтовый сегмент, который успешно принимается получателем, то получатель подтверждает его получение. Однако при этом у получателя остается всего лишь 2048 байт свободного буферного пространства (пока приложение не заберет сколько-нибудь данных из буфера), о чем он и сообщает отправителю, указывая соответствующий размер окна (2048) и номер следующего ожидаемого байта.

После этого отправитель посылает еще 2048 байт, получение которых подтверждается, но размер окна объявляется равным 0. Отправитель должен прекратить передачу до тех пор, пока получающий хост не освободит место в буфере и не увеличит размер окна.

При нулевом размере окна отправитель не может посылать сегменты, за исключением двух случаев. Во-первых, разрешается посылать срочные данные, например, чтобы пользователь мог уничтожить процесс, выполняющийся на удаленной машине. Во-вторых, отправитель может послать 1-байтовый сегмент, прося получателя повторить информацию о размере окна и ожидаемом следующем байте. Стандарт TCP явно предусматривает эту возможность для предотвращения тупиковых ситуаций в случае потери объявления о размере окна.

Отправители не обязаны передавать данные сразу, как только они приходят от приложения. Также никто не требует от получателей посылать подтвержде­ния как можно скорее. Например TCP-сущность, получив от прило­жения первые 2 Кбайт данных и зная, что доступный размер окна равен 4 Кбайт, была бы совершенно права, если бы просто сохранила полученные данные в буфере до тех пор, пока не прибудут еще 2 Кбайт данных, чтобы передать сразу сегмент с 4 Кбайт полезной нагрузки. Эта свобода действий может использоваться для улучшения производительности.

Рассмотрим TELNET-соединение с интерактивным редактором, реагирующим на каждое нажатие клавиши. В худшем случае, когда символ прибывает к передающей TCP-сущности, она создает 21-байтовый TCP-сегмент и передает его IP-уровню, который, в свою очередь, посылает 41-байтовую IP-дейтаграмму.

На принимающей стороне TCP-сущность немедленно отвечает 40-байтовым подтверждением (20 байт TCP-заголовка и 20 байт IP-заголовка). Затем, когда редактор прочитает этот байт из буфера, TCP-сущность пошлет обновленную информацию о размере буфера, передвинув окно на 1 байт вправо. Размер этого пакета также составляет 40 байт. Наконец, когда редактор обработает этот символ, он отправляет обратно эхо, передаваемое 41-байтовым пакетом. Итого для каждого введенного с клавиатуры символа пересылается четыре пакета общим размером 162 байта. В условиях дефицита пропускной способности линий этот метод работы нежелателен.

Для улучшения ситуации многие реализации TCP используют задержку подтверждений и обновлений размера окна на 500 мс в надежде получить дополни­тельные данные, вместе с которыми можно будет отправить подтверждение од­ним пакетом. Если редактор успеет выдать эхо в течение 500 мс, удаленному пользователю нужно будет выслать только один 41-байтовый пакет, таким образом, нагрузка на сеть снизится вдвое.

Хотя такой метод задержки и снижает нагрузку на сеть, тем не менее, эффективность использования сети отправителем продолжает оставаться невысокой, так как каждый байт пересылается в отдельном 41-байтовом пакете. Метод, позволяющий повысить эффективность, известен как алгоритм Нагля (Nagle, 1984). Предложение Нагля звучит довольно просто: если данные поступают отправителю по одному байту, отправитель просто передает первый байт, а остальные помещает в буфер, пока не будет получено подтверждение приема первого байта. После этого можно переслать все накопленные в буфере символы в виде одного TCP-сегмента и снова начать буферизацию до получения подтверждения отосланных символов. Если пользователь вводит символы быстро, а сеть медленная, то в каждом сегменте будет передаваться значительное количество символов, таким образом, нагрузка на сеть будет существенно снижена. Кроме того, этот алгоритм позволяет посылать новый пакет, даже если число символов в буфере превышает половину размера окна или максимальный размер сегмента.

Алгоритм Нагля широко применяется различными реализациями протокола TCP, однако иногда бывают ситуации, в которых его лучше отключить. В частности, при работе приложения X-Windows в Интернете информация о перемещениях мыши пересылается на удаленный компьютер. (X-Window - это система управления окнами в большинстве ОС типа UNIX). Если буферизировать эти данные для пакетной пересылки, курсор будет перемещаться рывками с большими паузами, в результате чего пользоваться программой будет очень сложно, почти невозможно.

Еще одна проблема, способная значительно снизить производительность протокола TCP, известна под именем синдрома глупого окна (Clark, 1982). Суть проблемы состоит в том, что данные пересылаются TCP-сущностью крупными блоками, но принимающая сторона интерактивного приложения считывает их посимвольно.

Рассмотрим на примере - начальное состояние таково: TCP-буфер приемной стороны полон, и отправителю это известно (то есть размер его окна равен 0). Затем интерактивное приложение читает один символ из TCP-потока. Принимающая TCP-сущность радостно сообщает отправителю, что размер окна увеличился, и что он теперь может послать 1 байт. Отправитель повинуется и посылает 1 байт. Буфер снова оказывается полон, о чем получатель и извещает, посылая подтверждение для 1-байтового сегмента с нулевым размером окна. И так может продолжаться вечно.

Дэвид Кларк (David Clark) предложил запретить принимающей стороне отправлять информацию об однобайтовом размере окна. Вместо этого получатель должен подождать, пока в буфере не накопится значительное количество сво­бодного места. В частности, получатель не должен отправлять сведения о новом размере окна до тех пор, пока он не сможет принять сегмент максимального размера, который он объявлял при установке соединения, или его буфер не освободился хотя бы наполовину.

Кроме того, увеличению эффективности отправки может способствовать сам отправитель, отказываясь от отправки слишком маленьких сегментов. Вместо этого он должен подождать, пока размер окна не станет достаточно большим для того, чтобы можно было послать полный сегмент или, по меньшей мере, равный половине размера буфера получателя. (Отправитель может оценить этот размер по последовательности сообщений о размере окна, полученных им ранее.)

В задаче избавления от синдрома глупого окна алгоритм Нагля и решение Кларка дополняют друг друга. Нагль пытался решить проблему приложения, предоставляющего данные TCP-сущности посимвольно. Кларк старался разрешить проблему приложения, посимвольно получающего данные у TCP. Оба решения хороши и могут работать одновременно. Суть их состоит в том, чтобы не посылать и не просить передавать данные слишком малыми порциями.

Принимающая TCP-сущность может пойти еще дальше в деле повышения производительности, просто обновляя информацию о размере окна большими порциями. Как и отправляющая TCP-сущность, она также может буферизировать данные и блокировать запрос на чтение READ, поступающий от приложения, до тех пор, пока у нее не накопится большого объема данных. Таким образом, снижается количество обращений к TCP-сущности и, следовательно, снижаются накладные расходы. Конечно, такой подход увеличивает время ожидания ответа, но для неинтерактивных приложений, например при передаче файла, сокращение времени, затраченного на всю операцию, значительно важнее увеличения времени ожидания ответа на отдельные запросы.

Еще одна проблема получателя состоит в сегментах, полученных в неправильном порядке. Они могут храниться или отвергаться по усмотрению получателя. Разумеется, подтверждение может быть выслано, только если все данные вплоть до подтверждаемого байта получены. Если до получателя доходят сегменты О, 1, 2, 4, 5, 6 и 7, он может подтвердить получение данных вплоть до последнего байта сегмента 2. Когда у отправителя истечет время ожидания, он передаст сегмент 3 еще раз. Если к моменту прибытия сегмента 3 получатель сохранит в буфере сегменты с 4-го по 7-й, он сможет подтвердить получение всех байтов, вплоть до последнего байта сегмента 7.

- 1

Ускорение каких-либо процессов невозможно без детального представления их внутреннего устройства. Ускорение интернета невозможно без понимания (и соответствующей настройки) основополагающих протоколов - IP и TCP. Давайте разбираться с особенностями протоколов, влияющих на скорость интернета.

IP (Internet Protocol) обеспечивает маршрутизацию между хостами и адресацию. TCP (Transmission Control Protocol) обеспечивает абстракцию, в которой сеть надежно работает по ненадежному по своей сути каналу.

Протоколы TCP/IP были предложены Винтом Серфом и Бобом Каном в статье «Протокол связи для сети на основе пакетов», опубликованной в 1974 году. Исходное предложение, зарегистрированное как RFC 675, было несколько раз отредактировано и в 1981 году 4-я версия спецификации TCP/IP была опубликована как два разных RFC:

  • RFC 791 – Internet Protocol
  • RFC 793 – Transmission Control Protocol

С тех пор было сделано несколько улучшений в TCP, но его основа осталась прежней. TCP быстро заменил другие протоколы, и теперь с его помощью функционируют основные компоненты того, как мы представляем себе интернет: сайты, электронная почта, передача файлов и другие.

TCP обеспечивает нужную абстракцию сетевых соединений, чтобы приложениям не пришлось решать различные связанные с этим задачи, такие как: повторная передача потерянных данных, доставка данных в определенном порядке, целостность данных и тому подобное. Когда вы работаете с потоком TCP, вы знаете, что отправленные байты будут идентичны полученным, и что они придут в одинаковом порядке. Можно сказать, что TCP больше «заточен» на корректность доставки данных, а не на скорость. Этот факт создает ряд проблем, когда дело доходит до оптимизации производительности сайтов.

Стандарт НТТР не требует использования именно TCP как транспортного протокола. Если мы захотим, мы можем передавать НТТР через датаграммный сокет (UDP – User Datagram Protocol) или через любой другой. Но на практике весь НТТР трафик передается через TCP, благодаря удобству последнего.

Поэтому необходимо понимать некоторые внутренние механизмы TCP, чтобы оптимизировать сайты. Скорее всего, вы не будете работать с сокетами TCP напрямую в своем приложении, но некоторые ваши решения в части проектирования приложения будут диктовать производительность TCP, через который будет работать ваше приложение.

Трехстороннее рукопожатие

Все TCP-соединения начинаются с трехстороннего рукопожатия (рис. 1). До того как клиент и сервер могут обменяться любыми данными приложения, они должны «договориться» о начальном числе последовательности пакетов, а также о ряде других переменных, связанных с этим соединением. Числа последовательностей выбираются случайно на обоих сторонах ради безопасности.

SYN

Клиент выбирает случайное число Х и отправляет SYN-пакет, который может также содержать дополнительные флаги TCP и значения опций.

SYN ACK

Сервер выбирает свое собственное случайное число Y, прибавляет 1 к значению Х, добавляет свои флаги и опции и отправляет ответ.

АСК

Клиент прибавляет 1 к значениям Х и Y и завершает хэндшейк, отправляя АСК-пакет.



Рис. 1. Трехстороннее рукопожатие.

После того как хэндшейк совершен, может быть начат обмен данными. Клиент может отправить пакет данных сразу после АСК-пакета, сервер должен дождаться АСК-пакета, чтобы начать отправлять данные. Этот процесс происходит при каждом TCP-соединении и представляет серьезную сложность плане производительности сайтов. Ведь каждое новое соединение означает некоторую сетевую задержку.

Например, если клиент в Нью-Йорке, сервер – в Лондоне, и мы создаем новое TCP-соединение, это займет 56 миллисекунд. 28 миллисекунд, чтобы пакет прошел в одном направлении и столько же, чтобы вернуться в Нью-Йорк. Ширина канала не играет здесь никакой роли. Создание TCP-соединений оказывается «дорогим удовольствием», поэтому повторное использование соединений является важной возможностью оптимизации любых приложений, работающих по TCP.

TCP Fast Open (TFO)

Загрузка страницы может означать скачивание сотен ее составляющих с разных хостов. Это может потребовать создания браузером десятков новых TCP-соединений, каждое из которых будет давать задержку из-за хэндшейка. Стоит ли говорить, что это может ухудшить скорость загрузки такой страницы, особенно для мобильных пользователей.

TCP Fast Open (TFO) – это механизм, который позволяет снизить задержку за счет того, что позволяет отправку данных внутри SYN-пакета. Однако и у него есть свои ограничения: в частности, на максимальный размер данных внутри SYN-пакета. Кроме того, только некоторые типы HTTP-запросов могут использовать TFO, и это работает только для повторных соединений, поскольку использует cookie-файл.

Использование TFO требует явной поддержки этого механизма на клиенте, сервере и в приложении. Это работает на сервере с ядром Linux версии 3.7 и выше и с совместимым клиентом (Linux, iOS9 и выше, OSX 10.11 и выше), а также потребуется включить соответствующие флаги сокетов внутри приложения.

Специалисты компании Google определили, что TFO может снизить сетевую задержку при HTTP-запросах на 15%, ускорить загрузку страниц на 10% в среднем и в отдельных случаях – до 40%.

Контроль за перегрузкой

В начале 1984 года Джон Нейгл описал состояние сети, названное им как «коллапс перегрузки», которое может сформироваться в любой сети, где ширина каналов между узлами неодинакова.

Когда круговая задержка (время прохождения пакетов «туда-обратно») превосходит максимальный интервал повторной передачи, хосты начинают отправлять копии одних и тех же датаграмм в сеть. Это приведет к тому, что буферы будут забиты и пакеты будут теряться. В итоге хосты будут слать пакеты по нескольку раз, и спустя несколько попыток пакеты будут достигать цели. Это называется «коллапсом перегрузки».

Нейгл показал, что коллапс перегрузки не представлял в то время проблемы для ARPANETN, поскольку у узлов была одинаковая ширина каналов, а у бэкбона (высокоскоростной магистрали) была избыточная пропускная способность. Однако это уже давно не так в современном интернете. Еще в 1986 году, когда число узлов в сети превысило 5000, произошла серия коллапсов перегрузки. В некоторых случаях это привело к тому, что скорость работы сети падала в 1000 раз, что означало фактическую неработоспособность.

Чтобы справиться с этой проблемой, в TCP были применены несколько механизмов: контроль потока, контроль перегрузки, предотвращение перегрузки. Они определяли скорость, с которой данные могут передаваться в обоих направлениях.

Контроль потока

Контроль потока предотвращает отправку слишком большого количества данных получателю, которые он не сможет обработать. Чтобы этого не происходило, каждая сторона TCP-соединения сообщает размер доступного места в буфере для поступающих данных. Этот параметр - «окно приема» (receive window – rwnd).

Когда устанавливается соединение, обе стороны задают свои значения rwn на основании своих системных значений по умолчанию. Открытие типичной страницы в интернете будет означать отправку большого количества данных от сервера клиенту, таким образом, окно приема клиента будет главным ограничителем. Однако, если клиент отправляет много данных на сервер, например, загружая туда видео, тогда ограничивающим фактором будет окно приема сервера.

Если по каким-то причинам одна сторона не может справиться с поступающим потоком данных, она должна сообщить уменьшенное значение своего окна приема. Если окно приема достигает значения 0, это служит сигналом отправителю, что не нужно более отправлять данные, пока буфер получателя не будет очищен на уровне приложения. Эта последовательность повторяется постоянно в каждом TCP-соединении: каждый АСК-пакет несет в себе свежее значение rwnd для обеих сторон, позволяя им динамически корректировать скорость потока данных в соответствии с возможностями получателя и отправителя.



Рис. 2. Передача значения окна приема.

Масштабирование окна (RFC 1323)

Исходная спецификация TCP ограничивала 16-ю битами размер передаваемого значения окна приема. Это серьезно ограничило его сверху, поскольку окно приема не могло быть более 216 или 65 535 байт. Оказалось, что это зачастую недостаточно для оптимальной производительности, особенно в сетях с большим «произведением ширины канала на задержку» (BDP – bandwidth-delay product).

Чтобы справиться с этой проблемой в RFC 1323 была введена опция масштабирования TCP-окна, которая позволяла увеличить размер окна приема с 65 535 байт до 1 гигабайта. Параметр масштабирования окна передается при трехстороннем рукопожатии и представляет количество бит для сдвига влево 16-битного размера окна приема в следующих АСК-пакетах.

Сегодня масштабирование окна приема включено по умолчанию на всех основных платформах. Однако промежуточные узлы, роутеры и сетевые экраны могут переписать или даже удалить этот параметр. Если ваше соединение не может полностью использовать весь канал, нужно начать с проверки значений окон приема. На платформе Linux опцию масштабирования окна можно проверить и установить так:

$> sysctl net.ipv4.tcp_window_scaling $> sysctl -w net.ipv4.tcp_window_scaling=1

В следующей части мы разберемся, что такое TCP Slow Start, как оптимизировать скорость передачи данных и увеличить начальное окно, а также соберем все рекомендации по оптимизации TCP/IP стека воедино.

Функции транспортного уровня

  • обеспечивает логическое соединение между приложениями;
  • реализует надежную передачу данных;
  • обеспечивает контроль скорости передачи данных.

Сокеты

Сокет (socket, гнездо) - это структура данных, идентифицирующая сетевое соединение.

Зачем нужны сокеты? Сервер (программа) может одновременно поддерживать несколько TCP-соединений с другими компьютерами, используя один и тот же стандартный номер порта. Как это реализовать? Можно возложить эту задачу на программиста. Пусть он выбирает из буфера приема сетевого уровня пакеты, смотрит от кого они отправлены и отвечает соответствующим образом. Но можно сделать все это удобнее.

С каждым соединением должен быть связан свой поток, в который можно писать информацию и из которого можно ее считывать. Каждому потоку соответствует свой IP-адрес удаленного компьютера и свой порт удаленного компьютера. Будем назвать структуру данных, соответствующую каждому такому потоку, сокетом (розеткой). Таким образом, сервер можно сравнить с разветвителем с кучей розеток, к которым подключены клиенты.

Если сделать так, то вместо того, чтобы разбираться в куче разносортных пакетов из буфера приема сетевого уровня, сервер будет читать из потоков, каждый из которых соответствует своему клиенту. Данные от клиентов не будут сваливаться в кучу, а будут распределяться по потокам-сокетам. Ответственность за такое распределение ложится не на программиста, а на драйвер транспортного уровня операционной системы.

Сокеты были разработаны в университете Калифорнии в городе Berkeley, стали стандартом де-факто в противоположность OSI TLI (Transport Layer Interface).

Историческая справка. Раскол UNIX

С 1978 года начинает свою историю BSD UNIX, созданный в университете Беркли. Автором BSD был Билл Джой. В начале 1980-х компания AT&T, которой принадлежали Bell Labs, осознала ценность UNIX и начала создание коммерческой версии UNIX. Важной причиной раскола UNIX стала реализация в 1980 г. стека протоколов TCP/IP. До этого межмашинное взаимодействие в UNIX пребывало в зачаточном состоянии - наиболее существенным способом связи был UUCP (средство копирования файлов из одной UNIX-системы в другую, изначально работавшее по телефонным сетям с помощью модемов).

Эти две операционные системы реализовали 2 различных интерфейса программирования сетевых приложений: Berkley sockets (TCP/IP) и интерфейс транспортного уровня TLI (OSI ISO) (англ. Transport Layer Interface). Интерфейс Berkley sockets был разработан в университете Беркли и использовал стек протоколов TCP/IP, разработанный там же. TLI был создан AT&T в соответствии с определением транспортного уровня модели OSI. Первоначально в ней не было реализации TCP/IP или других сетевых протоколов, но подобные реализации предоставлялись сторонними фирмами. Это, как и другие соображения (по большей части, рыночные), вызвало окончательное размежевание между двумя ветвями UNIX - BSD (университета Беркли) и System V (коммерческая версия от AT&T). Впоследствии многие компании, лицензировав System V у AT&T, разработали собственные коммерческие разновидности UNIX, такие, как AIX, HP-UX, IRIX, Solaris.

Примитивы сокетов

SOCKET создать новый (пустой) сокет
BIND сервер связывает свой локальный адрес (порт) с сокетом
LISTEN сервер выделяет память под очередь подсоединений клиентов (TCP)
ACCEPT сервер ожидает подсоединения клиента или принимает первое подключение из очереди (TCP). Чтобы заблокировать ожидание входящих соединений, сервер выполняет примитив ACCEPT. Получив запрос соединения, транспортный модуль ОС создает новый сокет с теми же свойствами, что и у исходного сокета, и возвращает описатель файла для него. После этого сервер может разветвить процесс или поток, чтобы обработать соединение для нового сокета и параллельно ожидать следующего соединения для оригинального сокета
CONNECT клиент запрашивает соединение (TCP)
SEND / SEND_TO послать данные (TCP/UDP)
RECEIVE / RECEIVE_FROM получить данные (TCP/UDP)
DISCONNECT запросить разъединение (TCP)

Мультиплексирование и демультиплексирование

Мультиплексирование - сбор сообщений от сокетов всех приложений и добавление заголовков.

Демультиплексирование - распределение приходящих данных по сокетам.

Для UDP нужный сокет определяется номером порта получателя, для TCP - номером порта получателя, IP-адресом и номером порта отправителя.

Протоколы транспортного уровня

На транспортном уровне действует два протокола: TCP (надежный) и UDP (ненадежный).

Протокол UDP

UDP (User Datagram Protocol) выполняет минимум действий, позволяя приложению почти напрямую работать с сетевым уровнем. Работает гораздо быстрее TCP, потому что не нужно устанавливать соединение и ожидать подтверждения доставки. Возможны потери сегментов. Осуществляет контроль корректности передаваемых данных (контрольная сумма).

Структура UDP-сегмента

Заголовок всего 8 байт.

Принципы надежной передачи данных

Спроектируем протокол myTCP, последовательно его усложняя.

  • Состояния протокола myTCP 1.0. Передача по абсолютно надежному каналу
  • Состояния протокола myTCP 1.0 (отправитель) (передача по абсолютно надежному каналу).JPG

    Отправитель

    Состояния протокола myTCP 1.0 (получатель) (передача по абсолютно надежному каналу).JPG

    Получатель

  • Состояния протокола myTCP 2.0. Передача по каналу, допускающему искажения битов. Потери пакетов невозможны
  • Состояния протокола myTCP 2.0 (отправитель) (передача по каналу, допускающему искажения битов. Потери пакетов невозможны).JPG

    Отправитель

    Состояния протокола myTCP 2.0 (получатель) (передача по каналу, допускающему искажения битов. Потери пакетов невозможны).JPG

    Получатель

Но квитанции тоже могут теряться. Если квитанция искажена отправитель опять посылает пакет. Получатель должен думать как обрабатывать повторные пакеты (нужно ввести новое состояние - передали прошлый пакет приложению или нет).

Роль идентификаторов «повторный» и «новый» в TCP/IP играют номера пакетов (т.к. пакеты еще могут теряться).

  • Состояния протокола myTCP 2.1. Передача по каналу, допускающему искажения битов. Потери пакетов невозможны
  • Состояния протокола myTCP 2.1 (отправитель) (передача по каналу, допускающему искажения битов. Потери пакетов невозможны).JPG

    Отправитель

    Состояния протокола myTCP 2.1 (получатель) (передача по каналу, допускающему искажения битов. Потери пакетов невозможны).JPG

    Получатель

Главная разница между состояниями получателя в том, как обрабатываются повторные пакеты. В состоянии «Прошлый пакет передан приложению» мы выкидываем повторные пакеты, а в состоянии «Прошлый пакет не был передан приложению» мы их принимаем и передаем приложению.

Теперь пришло время вспомнить, что пакеты могут теряться.

  • Нужно уметь определять факт потери пакета, например, засекать время после того, как отправлен пакет.
  • Нужно нумеровать пакеты.
  • В квитанциях нужно указывать номер пакета, на который она отправлена.

Таким образом, мы приходим к необходимости таймера. В случае, если прошло какое-либо определенное время и подтверждение не пришло, то осуществляется повторная отправка сообщения. Интервал времени - маленький т.к. вероятность потери принимается близкой к 1 (это и вправду так даже для хорошего WiFi-соединения).

Недостатки протоколов с ожиданием подтверждений

Рассмотрим пример. Пусть имеется 1Гб-канал Ростов - Москва. Посчитаем время отправки 1000 байт (или 8000 бит):

8000 бит / 1 Гб/с = 8 мкс

Время распространения сигнала:

1000 км / 300 000 км/с = 3333 мкс

Итого: следующие 1000 байт будут отправлены более чем через 6674 мкс

Вывод: 99,9% времени канал не использует.

Путь решения - увеличить размер пакета. Но ведь если хотя бы 1 бит исказится, то весь пакет выкинут. Что тогда?

Протоколы скользящего окна

Решение проблемы: разрешить отправителю посылать не один кадр, а несколько прежде чем остановиться и перейти в режим ожидания подтверждений (квитанций). Такая техника называется конвейерной обработкой .

На рисунке зеленым обозначены те квитанции, которые уже получены, желтым - отправленные, но не полученные, голубые подготовлены к отправке, а белые нельзя отправлять, пока не получим квитанции на желтые. Окно: желтые и голубые - это пакеты, которые могут быть переданы без ожидания квитанций. Первый белый пакет может быть отправлен только после того, как получили подтверждение на первый желтый. Тогда окно подвигается на 1 вправо.

Может возникнуть вопрос: зачем ограничивать размер окна, давайте все пакеты передадим, а потом будем ожидать подтверждений. Но так делать нельзя: легко получить перегрузку в сети.

Есть два способа решить проблемы возникновения ошибок при конвейеризации кадров:

  • GBN (Go Back N - возвращение на N пакетов назад);
  • SR (Selective Repeat - выборочное повторение).
GBN

Получатель отправляет только положительные квитанции и только о получении тех пакетов, для которых выполняется условие: все пакеты с меньшими номерами уже получены. Таким образом, здесь используется групповое квитирование : получение отправителем квитанции с номером i означает, что все пакеты до i включительно доставлены успешно. Если по истечении некоторого времени отправитель не получает квитанции, он повторяет отправление всех N пакетов начиная со следующего за последним квитированным.

Метод GBN неэффективен при большом окне и долгом распространении пакетов по сети, в которой случаются потери. Пример: отправили 1000 пакетов, второй не пришел, приходится повторять отправку всех, начиная со второго. Мы «засоряем» сеть бесполезным трафиком.

SR

Этот подход предусматривает отправку квитанции на каждый пакет. Получатель хранит в своем буфере все правильные кадры, принятые после неверного или потерянного. При этом неверный кадр отбрасывается. Если время ожидания квитанции на какой-то кадр истекает, отправитель еще раз отправляет этот кадр, не повторяя отправку всех последующих. Если вторая попытка будет успешной, накопившиеся у получателя пакеты могут быть переданы на сетевой уровень, после чего будет выслано подтверждение получения кадра с наибольшим номером.

Часто выборочный метод комбинируют с отправкой получателем «отрицательного подтверждения» (NAK - Negative Acknowledgement) при обнаружении ошибки (например, при неверной контрольной сумме). При этом эффективность работы повышается.

При большом окне подход SR может потребовать значительного размера буфера.

Протокол TCP

Формат TCP-сегмента

TCP-сегмент состоит из поля данных и нескольких полей заголовка. Поле данных содержит фрагмент данных, передаваемых между процессами. Размер поля данных ограничивается величиной MSS (максимальный размер сегмента). Когда протокол осуществляет передачу большого файла, он, как правило, разбивает данные на фрагменты размером MSS (кроме последнего фрагмента, который обычно имеет меньший размер). Интерактивные приложения, напротив, часто обмениваются данными, объем которых значительно меньше MSS. Например, приложения удаленного доступа к сети, подобные Telnet, могут передать транспортному уровню 1 байт данных. Поскольку обычно длина заголовка ТСР-сегмента составляет 20 байт (что на 12 байт больше, чем в UDP), полный размер сегмента в этом случае равен 21 байт.

Как и в протоколе UDP, заголовок включает номера портов отправителя и получателя, предназначенные для процедур мультиплексирования и демультиплексирования данных, а также поле контрольной суммы. Кроме того, в состав TCP-сегмента входят еще некоторые поля.

  • 32-разрядные поля порядкового номера и номера подтверждения. Необходимы для надежной передачи данных.
  • 4-разрядное поле длины заголовка определяет длину TCP-заголовка в 32-разрядных словах. Минимальный размер составляет 5 слов, а максимальный - 15, что составляет 20 и 60 байт соответственно. TCP-заголовок может иметь переменную длину благодаря полю параметров, описанному ниже (как правило, поле параметров является пустым; это означает, что длина заголовка составляет 20 байт).
  • Поле флагов состоит из 6 бит. Бит подтверждения (АСК) указывает на то, что значение, содержащееся в квитанции, является корректным. Биты RST, SYN и FIN используются для установки и завершения соединения. Установленный бит PSH инструктирует получателя протолкнуть данные, накопившиеся в приемном буфере, в приложение пользователя. Бит URG показывает, что в сегменте находятся данные, помещенные верхним уровнем как «срочные». Расположение последнего байта срочных данных указано в 16-разрядном поле указателя срочных данных. На принимающей стороне протокол TCP должен уведомить верхний уровень о наличии срочных данных в сегменте и передать ему указатель на конец этих данных. На практике флаги PSH, URG и поле указателя срочных данных не используются. Мы упомянули о них лишь для полноты описания.
  • 16-разрядное окно приема используется для управления потоком данных. Оно содержит количество байтов, которое способна принять принимающая сторона.
  • Указатель важности - 16-битовое значение положительного смещения от порядкового номера в данном сегменте. Это поле указывает порядковый номер октета которым заканчиваются важные (urgent) данные. Поле принимается во внимание только для пакетов с установленным флагом URG.
  • Необязательное поле параметров используется в случаях, когда передающая и принимающая стороны «договариваются» о максимальном размере сегмента, либо для масштабирования окна в высокоскоростных сетях. Также в этом поле определяется параметр временных меток. Дополнительную информацию можно найти в документах RFC 854 и RFC 1323 .
Порядковые номера и номера подтверждения

Порядковый номер сегмента - это номер первого байта этого сегмента.

Номер подтверждения - это порядковый номер следующего ожидаемого байта.

Поля порядкового номера и номера подтверждения являются наиболее важными в заголовке TCP-сегмента, поскольку играют ключевую роль в функционировании службы надежной передачи данных. Однако перед тем, как рассматривать роль этих полей в механизме надежной передачи, обратимся к величинам, которые протокол TCP помещает в эти поля.

Протокол TCP рассматривает данные как неструктурированный упорядоченный поток байтов. Такой подход проявляется в том, что TCP назначает порядковые номера не сегментам, а каждому передаваемому байту. Исходя из этого, порядковый номер сегмента определяется как порядковый номер первого байта этого сегмента. Рассмотрим следующий пример. Пусть хост А желает переслать поток данных хосту В через TCP-соединение. Протокол TCP на передающей стороне неявно нумерует каждый байт потока. Пусть размер передаваемого файла составляет 500 000 байт, величина MSS равна 1000 байт, и первый байт потока имеет порядковый номер 0. TCP разбивает поток данных на 500 сегментов. Первому сегменту присваивается порядковый номер 0, второму сегменту - номер 1000, третьему сегменту - номер 2000, и т. д. Порядковые номера заносятся в поля порядковых номеров каждого TCP-сегмента.

Теперь рассмотрим номера подтверждения. Вспомним о том, что протокол TCP обеспечивает дуплексную передачу данных, то есть через единственное TCP-соединение данные между хостами А и В могут передаваться одновременно в обе стороны. Каждый сегмент, исходящий из хоста В, содержит порядковый номер данных, передающихся от хоста В к хосту А. Номер подтверждения, который хост А помещает в свой сегмент, - это порядковый номер следующего байта, ожидаемого хостом А от хоста В. Рассмотрим следующий пример. Предположим, что хост А получил все байты с номерами от 0 до 535, посланные хостом В, и формирует сегмент для передачи хосту В. Хост А ожидает, что следующие байты, посылаемые хостом В, будут иметь номера, начинающиеся с 536, и помещает число 536 в поле номера подтверждения своего сегмента.

Рассмотрим другую ситуацию. Пусть хост А получил от хоста В два сегмента, в первом из которых содержатся байты с номерами от 0 до 535, а во втором - байты с номерами от 900 до 1000. Это означает, что по какой-либо причине байты с номерами от 536 до 899 не были получены хостом А. В этом случае хост А ожидает появления отсутствующих байтов и в поле номера подтверждения своего сегмента помещает число 536. Поскольку TCP квитирует принятые данные до первого отсутствующего байта, говорят, что он поддерживает общее квитирование.

Последний пример демонстрирует очень важный аспект функционирования протокола TCP. Третий сегмент (содержащий байты 900-1000) принят хостом А раньше, чем второй (содержащий байты 536-899), то есть с нарушением порядка следования данных. Возникает вопрос: как протокол TCP реагирует на нарушение порядка? Если полученный сегмент содержит номер последовательности больший, чем ожидаемый, то данные из сегмента буферизируется, но номер подтвержденной последовательности не изменяется. Если в последствии будет принят сегмент, относящийся к ожидаемому номеру последовательности, то порядок данных будет автоматически восстановлен исходя из номеров последовательностей в сегментах. Таким образом TCP относится к протоколам SR, но у него используется общее квитирование как в GBN. Хотя SR – не совсем чистое. Если посылаемая сторона получает несколько (3) отрицательных квитанций на один и тот же сегмент x, то она догадывается, что произошла перегрузка сети и сегменты x+1, x+2, x+3,… тоже не были доставлены. Тогда посылается вся серия начиная с x – как в протоколах GBN.

Проблемы с максимальным размером сегмента

TCP требует явного указания максимального размера сегмента в случае если виртуальное соединение осуществляется через сегмент сети, где максимальный размер блока (MTU) менее чем стандартный MTU Ethernet (1500 байт). В протоколах туннелирования, таких как GRE, IPIP, а так же PPPoE MTU туннеля меньше чем стандартный, поэтому сегмент TCP максимального размера имеет длину пакета больше, чем MTU. Поскольку фрагментация в подавляющем большинстве случаев запрещена, то такие пакеты отбрасываются.

Проявление этой проблемы выглядит как «зависание» соединений. При этом «зависание» может происходить в произвольные моменты времени, а именно тогда, когда отправитель использовал сегменты длиннее допустимого размера. Для решения этой проблемы на маршрутизаторах применяются правила Firewall-а, добавляющие параметр MSS во все пакеты, инициирующие соединения, чтобы отправитель использовал сегменты допустимого размера. MSS может так же управляться параметрами операционной системы.

Тройное рукопожатие

Чтобы установить соединение, хост 2 пассивно ожидает входящего соединения, выполняя примитив ACCEPT.

Хост 2 выполняет примитив CONNECT, указывая IP-адрес и порт, с которым он хочет установить соединение, максимальный размер TCP-сегмента и т.п.. Примитив CONNECT посылает TCP-сегмент «Connection request» с установленным битом SYN=1 и сброшенным битом АСК=0 и ждет ответа. Таким образом, хост 1 сообщает порядковый номер x последовательности битов от хоста 1 к 2.

Хост 2 отсылает в ответ подтверждение «Connection accepted» (функция accept). Последовательность TCP-сегментов, посылаемых в нормальном случае, показана на рис: SYN=1 ASK=1, хост 2 сообщает порядковый номер x последовательности битов от хоста 2 к 1 и сообщает, что он ожидает продолжения данных начиная с байта № x+1.

Хост 1 (Connect) отправляет подтверждение о получении согласия на установление соединения.

Борьба с перегрузкой в TCP

Когда в какую-либо сеть поступает больше данных, чем она способна обработать, в сети образуются заторы. Интернет в этом смысле не является исключением. Хотя сетевой уровень также пытается бороться с перегрузкой, основной вклад в решение этой проблемы, заключающееся в снижении скорости передачи данных, осуществляется протоколом TCP.

Теоретически, с перегрузкой можно бороться с помощью принципа, заимствованного из физики, - закона сохранения пакетов. Идея состоит в том, чтобы не передавать в сеть новые пакеты, пока ее не покинут (то есть не будут доставлены) старые. Протокол TCP пытается достичь этой цели с помощью динамического управления размером окна.

Первый шаг в борьбе с перегрузкой состоит в том, чтобы обнаружить ее. Пару десятилетий назад обнаружить перегрузку в сети было сложно. Трудно было понять, почему пакет не доставлен вовремя. Помимо возможности перегрузки сети имелась также большая вероятность потерять пакет вследствие высокого уровня помех на линии.

В настоящее время потери пакетов при передаче случаются относительно редко, так как большинство междугородных линий связи являются оптоволоконными (хотя в беспроводных сетях процент пакетов, теряемых из-за помех, довольно высок). Соответственно, большинство потерянных пакетов в Интернете вызвано заторами. Все TCP-алгоритмы Интернета предполагают, что потери пакетов вызываются перегрузкой сети, и следят за тайм-аутами как за предвестниками проблем.

Прежде чем перейти к обсуждению того, как TCP реагирует на перегрузку, опишем сначала способы ее предотвращения, применяемые протоколом. При обнаружении перегрузки должен быть выбран подходящий размер окна. Получатель может указать размер окна, исходя из количества свободного места в буфере. Если отправитель будет иметь в виду размер отведенного ему окна, переполнение буфера у получателя не сможет стать причиной проблемы, однако она все равно может возникнуть из-за перегрузки на каком-либо участке сети между отправителем и получателем.

Борьба с перегрузкой в TCP

Проиллюстрируем эту проблему на примере водопровода. На рисунке а мы видим толстую трубу, ведущую к получателю с небольшой емкостью. До тех пор, пока отправитель не посылает воды больше, чем может поместиться в ведро, вода не будет проливаться, на рисунке б ограничительным фактором является не емкость ведра, а пропускная способность сети. Если из крана в воронку вода будет литься слишком быстро, то уровень воды в воронке начнет подниматься и, в конце концов, часть воды может перелиться через край воронки.

Решение, применяемое в Интернете, состоит в признании существования двух потенциальных проблем: низкой пропускной способности сети и низкой емкости получателя - и в раздельном решении обеих проблем. Для этого у каждого отправителя есть два окна: окно, предоставленное получателем, и окно перегрузки. Размер каждого из них соответствует количеству байтов, которое отправитель имеет право передать. Отправитель руководствуется минимальным из этих двух значений. Например, получатель говорит: «Посылайте 8 Кбайт», но отправитель знает, что если он пошлет более 4 Кбайт, то в сети образуется затор, поэтому он посылает все же 4 Кбайт. Если же отправитель знает, что сеть способна пропустить и большее количество данных, например 32 Кбайт, он передаст столько, сколько просит получатель (то есть 8 Кбайт).

При установке соединения отправитель устанавливает размер окна перегрузки равным размеру максимального используемого в данном соединении сегмента. Затем он передает один максимальный сегмент. Если подтверждение получения этого сегмента прибывает прежде, чем истекает период ожидания, к размеру окна добавляется размер сегмента, то есть размер окна перегрузки удваивается, и посылаются уже два сегмента. В ответ на подтверждение получения каждого из сегментов производится расширение окна перегрузки на величину одного максимального сегмента. Допустим, размер окна равен n сегментам. Если подтверждения для всех сегментов приходят вовремя, окно увеличивается на число байтов, соответствующее n сегментам. По сути, подтверждение каждой последовательности сегментов приводит к удвоению окна перегрузки.

Этот процесс экспоненциального роста продолжается до тех пор, пока не будет достигнут размер окна получателя или не будет выработан признак тайм-аута, сигнализирующий о перегрузке в сети. Например, если пакеты размером 1024, 2048 и 4096 байт дошли до получателя успешно, а в ответ на передачу пакета размером 8192 байта подтверждение не пришло в установленный срок, окно перегрузки устанавливается равным 4096 байтам. Пока размер окна перегрузки остается равным 4096 байтам, более длинные пакеты не посылаются, независимо от размера окна, предоставляемого получателем. Этот алгоритм называется затяжным пуском , или медленным пуском . Однако он не такой уж и медленный (Jacobson, 1988). Он экспоненциальный. Все реализации протокола TCP обязаны его поддерживать.

Рассмотрим теперь механизм борьбы с перегрузкой, применяемый в Интернете. Помимо окон получателя и перегрузки, в качестве третьего параметра в нем используется пороговое значение, которое изначально устанавливается равным 64 Кбайт. Когда возникает ситуация тайм-аута (подтверждение не возвращается в срок), новое значение порога устанавливается равным половине текущего размера окна перегрузки, а окно перегрузки уменьшается до размера одного максимального сегмента. Затем, так же как и в предыдущем случае, используется алгоритм затяжного пуска, позволяющий быстро обнаружить предел пропускной способности сети. Однако на этот раз экспоненциальный рост размера окна останавливается по достижении им порогового значения, после чего окно увеличивается линейно, на один сегмент для каждой следующей передачи. В сущности, предполагается, что можно спокойно урезать вдвое размер окна перегрузки, после чего постепенно наращивать его.

Механизмы надежной передачи. Обобщение

Контрольная сумма Обнаружение искажений битов в принятом пакете
Таймер Отсчет интервала ожидания и указание на его истечение. Последнее означает, что с высокой степенью вероятности пакет или его квитанция потеряны при передаче. В случае, если пакет доставляется с задержкой, но не теряется (преждевременное истечение интервала ожидания), либо происходит потеря квитанции, повторная передача приводит кдублированию пакета на принимающей стороне
Порядковые номера Последовательная нумерация пакетов, посылаемых передающей стороной. «Пробелы» в номерах получаемых пакетов позволяют сделать заключение о потерях данных. Одинаковые порядковые номера пакетов означают, что пакеты дублируют друг друга
«+» и «-» квитанции Генерируется принимающей стороной и указывает передающей стороне на то, что соответствующий пакет или группа пакетов были или не были приняты. Обычно подтверждение содержит порядковые номера успешно принятых пакетов. В зависимости от протокола различают индивидуальные и групповые подтверждения
Окно/конвейер Ограничивают диапазон порядковых номеров, которые могут использоваться для передачи пакетов. Групповая передача и квитирование позволяют значительно увеличить пропускную способность протоколов по сравнению с режимом ожидания подтверждений. Размер окна может быть рассчитан на основе возможностей приема и буферизации принимающей стороны, а также уровня загрузки сети

Особенности программирования

  1. Потоковое соединение TCP
    • ситуация а) возможна при плохой связи, если промежуток времени между приходами групп дейтаграмм сетевого уровня велик:
      • компьютер1 один раз использует функцию send;
      • компьютер2 не получает всю информацию за один вызов recv (нужно несколько вызовов).
    • ситуация б) возможна, если интервал времени между вызовами функции send мал и размер данных мал:
      • компьютер1 использует функцию send несколько раз;
      • компьютер2 получает всю информацию за один вызов recv.
  2. По протоколу UDP
    • ситуация а) - невозможна
      • компьютер1 один раз использует функцию send, на сетевом уровне UDP-сегмент разбивается на несколько пакетов;
      • компьютер2 получает сегмент всегда одним вызовом recv и только, если пришли все IP-дейтаграммы.
    • ситуация б) - невозможна
      • разные вызовы функции sendto на компьютере1 соответствуют разным UDP-датаграммам и разным вызовам recvfrom на компьютере2.
  3. Если буфер в функциях recv и recvfrom меньше, чем размер присланных данных, то в случае UDP часть данных теряется, а в случае TCP – остаток сохраняется для последующего вызова recv.
  4. У UDP-сервера 1 сокет, а TCP-сервер имеет много разных сокетов (по количеству одновременно подключенных клиентов) и каждому передается своя информация.

Многим знакома аббревиатура TCP, гораздо меньшее количество людей знает, что это протокол передачи данных. Но практически никто не знает, как он устроен.

Внимание! Этот материал рассчитан на тех, кого действительно интересуется вопросом: "Как устроена сеть, и что я могу сделать, если буду это знать". Если же тебя еще смущают слова вроде DNS, Telnet, Socket - то можешь сразу забить на этот материал - такие "страшные" слова тут конечно не встретятся, но от этого содержание понятней не станет…

Для тех кто остался:

Наверное, многие из вас слышали такие слова как SYN-flooding или IP-spoofing. Все это разновидности атак - первая D.O.S., вторая
состоит в подмене IP-адреса. На первый взгляд между этими примерами нет ничего общего, но между тем, это не так - обе эти атаки не возможны без глубокого знания протокола TCP, протокола на котором стоит
Inet.

Спецификация протокола TCP описана в RFC793 . Рекомендую тебе ознакомится с этим документом, потому как хоть я и постараюсь повести до тебя самое важное, снабдив это важное соответствующими комментариями, которых ты не найдешь в мануале, но все же из-за малого объема и практического угла зрения, могу и упустить некоторые тонкости.

Данные, передаются в виде пакетов. Такая организация передачи означает, что данные, какого размера они ни были, разбиваются на отдельные фрагменты, которые формируются в пакеты (формирование пакетов предполагает, что к данным прибавляется служебный заголовок), после чего в виде пакетов данные передаются по сети (причем порядок передачи пактов может нарушаться). Принимающая система "собирает" из пакетов исходный массив данных на основании заголовков пакетов. Это не очень понятно, но только до тех пор, пока не рассмотрим структуру пакетов.

Структура TCP-пакета:

Поясню только самые важные места:

Адрес получателя, порт получателя и адрес отправителя, порт отправителя - это надеюсь понятно.

Sequence Number(SYN) - номер очереди или последовательный номер, показывает порядковый номер пакета при передаче, именно поэтому принимающая система собирает пакеты именно так, как надо, а не в том порядке, как они пришли.

Acknowledgment Number(ACK) - номер подтверждения, показывает, на пакет с каким SYN отвечает удаленная система, таким образом мы имеем представление, что удаленная система получила наш пакет с данным
SYN.

Контрольные биты- 6 бит (на схеме между reversed и window). Значения битов:

URG: поле срочного указателя задействовано
ACK: поле подтверждения задействовано
PSH: функция проталкивания
RST: перезагрузка данного соединения
SYN: синхронизация номеров очереди
FIN: нет больше данных для передачи

DATA - это непосредственно те данные, которые мы хотим передать.

Думаю, для начала это все, что нужно, чтобы понять принцип работы протокола. Более подробно о значении остальных полей ты можешь прочитать в в RFC793. Ну а мы лучше разберем как же все-таки это работает на практике.

Когда мы хотим установить соединение, мы отправляем удаленной системе пакет следующей структуры:

Client --- SYN (856779) --- Host

Где Client- это мы, a Host - это удаленная система. Как ты видишь, мы посылаем пакет лишь с указанием SYN - это значит, что этот пакет первый, мы ни на что не отвечаем (отсутствует ACK). Данный пакет выглядит примерно так:

20 53 52 43 00 00 44 45 53 54 00 00 08 00 45 00 00 2C C3 00 40 00 20 06 10 0C CB 5E FD BA CB 5E F3 47 04 07 00 17 00 0D 12 CB 00 00 00 00 60 02 20 00 D9 70 00 00 02 04 05 B4 2D

Интересный момент в том, откуда берется SYN. SYN образуется от первоначального номера очереди
(ISN) - это 32-битный номер от 1 до 4294967295 (2 в 32-ой степени). ISN при перезагрузке системы равен 1, затем каждую секунду он увеличивается на 128000 (строго говоря изменение происходит каждые 4 микросекунды) + при каждом установленном соединении он увеличивается на 64000. Получается, что цикл уникальности ISN, при условии того, что никакие соединения не устанавливались, составляет примерно 4,55 часа. Поскольку ни один пакет так долго по сети не путешествует, мы можем полагать, что SYN будет абсолютно уникальным.

Получив наш пакет, удаленная система отвечает, что получила и готова установить соединение. Данные пакет выглядит так:

Host --- SYN (758684758) и ACK (856780) --- Client

Как видишь, удаленная система дает понять, что получила наш пакет. Для этого она посылает нам ACK с номером "наш SYN+1". В добавок к этому удаленная система посылает нам свой SYN (мы же тоже будем отвечать). А ответ наш будет такой:

Client --- SYN (856780) и ACK (758684759) --- Host

Думаю тебе уже должно быть все понятно. Если кто не понял, то пакет означает следующее: ваш пакет с SYN (758684758) получен, соединение установлено, наш SYN равен 856780.

Эту процедуру называют "трехкратным подтверждением" или "трехкратным рукопожатием". Первые два этапа необходимы для синхронизации SYN наших систем, а третий - подтверждение того, что синхронизация произошла.

Далее у нас идет обмен данными, т.е. то, для чего соединение и устанавливалось. Причем надо заметить, что на всех стадиях обеспечение сохранности данных, передаваемых с использованием протокола TCP, осуществляется следующим образом: посланный пакет помещается в буфер и если за определенное время от удаленной системы не приходит пакет с подтверждением (ACK), то пакет посылается снова; если же подтверждение пришло, то пакет считается посланным успешно и удаляется из буфера.

Ну соединение нам больше не нужно, можно его и закрыть. Этот этап снова будет
состоять из нескольких стадий - надеюсь ты уже в состоянии сам прочитать эти пакеты.

Client --- FIN(4894376) и ACK (1896955378) --- Host

Host --- ACK (4894377) --- Client

Host --- FIN (1896955378) и ACK (4894377) --- Client

Client --- ACK (1896955378) --- Host

Думаю, ничего сложного здесь нет. Единственное, что стоит отметить - это флаг FIN, который означает желание завершить соединение.

Подводя небольшие итоги вышеизложенному, отметим в каких же случаях изменяются/не изменяются порядковые номера:

Передача одного FIN Пакета = +1
Передача одного SYN Пакета = +1
Передача одного ACK Пакета = 0
Передача одного SYN/ACK Пакета = +1
Передача одного FIN/ACK Пакета = +1
Изменение за 1 секунду = +128,000
Установление одного соединения = +64,000

Возможно, кто-то спросит: "А что будет, если машин получит пакет с таким ACK, которого не было?" (SYN=ACK-1, а пакет с таким SYN мы не посылали). Получив ответ непонятно на что, мы в свою очередь ответим удаленной системе NACK-пакетом (означает "не знаю о чем ты", никакого соединения не устанавливается), но, надеюсь, более подробно мы поговорим с тобой об этом в следующий раз.