Определение фазового центра антенны. Фазовый центр антенны (ФЦА) и его поиск в Ansys HFSS

5. ИСТОЧНИКИ ОШИБОК И ТОЧНОСТЬ ИЗМЕРЕНИЙ Существует несколько источников ошибок измерений и источников ошибок определения интересующих параметров. Принято разделять их на источники ошибок, вызванные работой аппаратуры, на источники ошибок, связанные с влиянием внешней среды и влиянием ошибок исходных данных, то есть в данном случае, с ошибками координат спутников.

К аппаратурным источникам ошибок относят факторы, определяющие разрешающую способность аппаратуры. Мерой разрешающей способности является ошибка, с которой пара приемников определяет вектор базы в неких идеальных условиях при длительной сессии наблюдений. Понятие «идеальные условия» трудно сформулировать строго. Можно сказать, что при таких условиях вокруг каждого приемника отсутствуют препятствия, a PDOP близок к единице. Понятие «длительная сессия» также можно определить только на качественном уровне. Продолжительность сессии и длительность цикла сбора информации таковы, что дальнейшие наблюдения уже не повышают точность. Это примерно 2-3 часа при длительности цикла в 15 секунд, хотя какие либо инструкции на этот счет отсутствуют. Опыт показывает, что при этом вектор базы длиной порядка километра определяется с ошибкой 2-3 миллиметра. Подчеркнем еще раз, что речь идет о внутренней, аппаратурной точности, обеспечиваемой качеством аппаратуры и уровнем ее программного обеспечения. Используя аналогию с наземной аппаратурой, можно сказать, что, понятие «разрешающая способность комплекта спутниковых приемников» аналогична понятию «инструментальная точность теодолита», мерой которой является ошибка измерения угла в лабораторных условиях.

Изначально аппаратура определяет вектор базы D0 , то есть вектор, связывающий фазовые центры антенн спутниковых приемников, см. рис. 6. Фазовый центр - это точка, или, точнее говоря, область, куда антенна «собирает» сигналы всех видимых спутников. Продолжая аналогию, можно сказать, что понятие фазового центра аналогично понятию точки пересечения вертикальной и горизонтальной осей теодолита. Используя введенную оператором информацию о высоте антенны и о типе этой антенны, программное обеспечение приводит результаты к центрам пунктов, то есть переходит от вектора D0 связывающего фазовые центры антенн, к вектору D , связки ющему центры пунктов.

Рис. 6. Антенны спутниковых приемников, установленные на пунктах
геодезической сети: D0 - связывает фазовые центры; D - связывает центры пунктов.

Положение фазового центра на антенне ничем не закреплено, но на каждой антенне, предназначенной для точных измерений, приведена схема, показывающая расположение центра относительно частей антенны. Это положение определяют для каждой антенны индивидуально в результате тщательных исследований. В идеале фазовый центр должен находиться на геометрической оси антенны, в реальности это условие может и не выполняться. Чтобы исключить или ослабить влияние этого источника ошибок на результаты определения векторов баз все антенны ориентируют единообразно. На антенне имеется стрелка, которую, устанавливая антенну на пункте, направляют на север. При установке используют оптический отвес (лот-аппарат). Для измерения высоты антенны используют рулетку либо специальный жезл. Вся эта процедура аналогична той, что выполняют при использовании наземной аппаратуры: дальномеров, теодолитов, тахеометров. Надежность и тщательность исполнения этой процедуры не могут быть проконтролированы программным обеспечением. Поэтому процессу центрирования и нивелирования антенны, измерению ее высоты и вводу значения высоты в память приемника уделяют особое внимание: контролируют все, что можно, делают повторные измерения высоты, делают дополнительные записи в полевом журнале. В целом влияние этого источника ошибок составляет 2-3 миллиметра. Вообще операторы предпочитают работать на пунктах, где предусмотрено принудительное центрирование антенны.

С антенной связан еще один источник ошибок: многолучевость или многопутностъ (multipass) сигнала. Хотя сигнал спутника и принадлежит к диапазону сверхвысоких частот, его волны отражаются от некоторых не слишком шероховатых иоверхностей. Длина волны несущих колебаний составляет примерно 0,2 метра, поэтому любая поверхность, размеры шероховатостей которой меньше этой величины, играют для данной волны роль зеркала. Радиоволны отражаются от ровной поверхности земли и от поверхности расположенного близ антенны препятствия, например, от стены здания. Отраженный сигнал попадает на антенну также как и сигнал, пришедший прямо со спутника. Длина пути, пройденного отраженным сигналом, больше интересующей наблюдателя длины пути прямого сигнала. Прямой сигнал, взаимодействуя с отраженным, искажается и это влияет на точность измерений. В наземной радиогеодезии такое явление известно, это - влияние на результаты радиодальномерных измерений отражения радиоволн от подстилающей поверхности и окружающих объектов. Чтобы «отсечь» отраженные от земли радиоволны используют граундплейн (groundplane). Это - изображенный на рисунке 6 металлический диск диаметром около 0,5 метра со стрелкой, которую и надо направлять на север. Антенна с граундплейном громоздка, ее трудно применять в режимах наблюдений, когда аппаратура в процессе движения включена. Тем не менее, именно такие антенны используют для получения наиболее точных результатов. Граундплейн, разумеется, не отсекает сигнал, отраженный от близрасположенного препятствия. Препятствие не только ухудшает геометрию наблюдений, закрывая часть небосклона, но и создает условия для многопутности. Поэтому и стремятся располагать пункты на открытых местах. Получается это не всегда. Например бывает, что необходимо определить пункт, находящийся близ здания. Единственной мерой, также как и мерой по повышению вероятности успешного разрешения многозначности, является увеличение длительности сессии наблюдений. Дело в том, что влияние многопутности с течением времени носит циклический характер и при достаточно длительной сессии в среднем исключается или ослабляется. При особо неблагоприятных условиях приходится находиться на пункте 5-6 часов и затем прикладывать большие усилия на этапе постобработки.

Влияние внешней среды, то есть атмосферы, достаточно подробно рассмотрено в разделе 5. Учет влияния атмосферы состоит в определении задержки сигнала в ионосфере, стратосфере и в тропосфере. Если расстояние между пунктами, на которых установлены приемники, невелико и имеет порядок десятка километров, то сигнал от спутника проходит до приемников по близким путям и испытывает на этих путях примерно одинаковые задержки. Считают, что учет задержек сигнала в атмосфере на таких базах особых проблем не составляет, хотя этот вопрос изучен недостаточно. Можно считать, что влияние этого источника ошибок лежит в пределах сантиметра.

Ошибки координат спутника как исходного пункта впрямую входят в ошибки координат приемника. Поэтому, если точность эфемерид такова, что геоцентрические координаты спутника получаются с ошибкой 10 метров, то и навигационные (абсолютные) координаты приемника невозможно получить с меньшей ошибкой. Иначе обстоит дело с определением разностей координат пунктов, расстояние между которыми гораздо меньше, чем расстояние до спутника. Этот источник ошибок влияет на разности координат пунктов гораздо слабее, чем на координаты самих пунктов. Ошибка mD определения вектора базы во столько раз меньше ошибки mD координат спутника, во сколько раз длина D базы меньше высоты Н орбиты спутника над поверхностью Земли. Напомним, что высота эта составляет 20 тысяч километров. В виде формулы: mD/D=mk/H . Например, на базе длиной 20 километров ошибка mD определения вектора этой базы будет составлять примерно одну тысячную от ошибки тк координат спутника. При mk =10м mD составит один сантиметр. Если пользователя не устраивает такая точность, то он будет вынужден использовать не широковещательные, а точные эфемериды.

То обстоятельство, что разности координат пунктов получаются гораздо точнее, чем координаты самих пунктов используют не только в геодезии, но и в навигации, когда аппаратура определяет кодовые псевдодальности и интерес представляют в основном плановые координаты носителя, чаще всего судна. На берегу судоходного залива или вблизи порта устанавливают дифференциальную станцию. Это - пункт с известными твердыми координатами. На нем установлен непрерывно работающий в Р-коде спутниковый приемник. Там же установлены передатчики, транслирующие дифференциальные поправки, о которых скажем несколько позже. Имеется комплекс оборудования, гарантирующего непрерывность работы, в том числе основные и резервные источники питания. Непрерывность работы важна, поскольку перерыв в обеспечении навигации судна, находящегося в узкости или в потоке других судов может привести к катастрофическим последствиям.

На дифференциальной станции непрерывно вычисляют координаты этой станции, получаемые из наблюдений спутников. Они отличаются от твердых координат станции вследствие ошибок измерений, вследствие влияния внешней среды и ошибок эфемерид спутников. Следующим шагом является вычисление разностей непрерывно получаемых и твердых координат дифференциальной станции. По этим разностям вычисляют разности практически измеренных и «твердых» псевдодальностей. Разности координат и разности псевдодальностей и называют дифференциальными поправками. Их транслируют в эфир. Аппаратура пользователя, оборудованная соответствующими приемными устройствами, способна принимать эти поправки.

Пользователь, находящийся на расстоянии в несколько десятков километров, также непрерывно или с какой-то дискретностью определяет свои «спутниковые» координаты. Координаты и псевдодальности искажены такими же ошибками, что и на дифференциальной станции. Поэтому введение дифференциальных поправок прямо в ходе навигации позволяет уменьшить ошибку определения местоположения подвижного носителя с уровня в несколько десятков метров до уровня в несколько дециметров. Такой режим работы называют дифференциальным .

Изобретение относится к антенным измерениям с использованием сверхширокополосных (СШП) сигналов и может быть использовано при разработке, испытаниях и калибровке антенн. Измерительную и испытуемую антенны размещают в дальней зоне, а для зондирования используют СШП сигналы. При предварительном зондировании поворачивают испытуемую антенну вокруг оси вращения на выбранные углы и находят фиксированное окно приема такое, чтобы принятые сигналы попадали в него. При основном зондировании оценивают в найденном окне разность времен распространения сигналов между фазовыми центрами антенн при разных углах поворота испытуемой антенны. Для этого либо оценивают различие в положении принятых СШП сигналов во временном окне приема, либо вычисляют их фазочастотный спектр, а координаты фазового центра испытуемой антенны вычисляют для спектра частот. Находят ось фазового центра испытуемой антенны, относительно которой время распространения сигналов между фазовыми центрами антенн не зависит от угла поворота испытуемой антенны. Для определения пространственного положения фазового центра антенны изменяют ось вращения испытуемой антенны и находят другую ось фазового центра. Фазовый центр испытуемой антенны находят на пересечении осей фазового центра. Техническим результатом является обеспечение быстрого и точного определения положения фазового центра испытуемой антенны для спектра частот. 2 з.п. ф-лы, 3 ил.

Изобретение относится к измерению электрических и магнитных величин, в частности к антенным измерениям с использованием сверхширокополосных (СШП) сигналов, и может быть использовано при разработке, испытаниях и калибровке антенн.

Фазовый центр антенны - это точка, в которую можно поместить одиночный излучатель сферической волны, эквивалентный рассматриваемой антенной системе в отношении фазы создаваемого поля . В реальных антеннах фазовый центр обычно рассматривается в рамках ограниченных углов главного лепестка диаграммы направленности. Положение фазового центра зависит от частоты используемого сигнала, направления излучения/приема антенны, его поляризации и других факторов. Некоторые антенны не имеют фазового центра в общепринятом понимании.

В простейших случаях, например у параболической антенны, фазовый центр совпадает с фокусом параболоида и может быть определен из геометрических соображений. Однако конструктивные и технологические погрешности приводят к смещению фазового центра даже в простейших конструкциях антенн. Для этих случаев известен способ определения фазового центра антенны , заключающиеся в том, что измерительную антенну помещают в область двойного фокусного расстояния исследуемой параболической антенны, перемещают антенную систему в точку максимального приема отраженного сигнала, определяют координаты указанной точки и, принимая их за центр аппроксимирующей параболоид сферы, находят фокус параболоида, который рассматривается как фазовый центр исследуемой параболической антенны. Определяя направление вектора Пойнтинга поля излучения антенны, можно определить оси фазового центра, которые пересекаются в фазовом центре антенны. Для определения точки пересечения достаточно определения двух осей.

Недостатком этого способа является ограниченная область применения - только для параболических антенн, а также значительная трудоемкость проведения измерений при необходимости определения фазового центра для спектра частот.

В более сложных случаях, например, рупорных антенн, положение фазового центра не очевидно и требует соответствующих измерений. Известен способ определения фазового центра излучающего рупора , заключающийся в возбуждении рупора СВЧ сигналом, приеме сигнала отраженного от специального экрана, оценке фазы принятого сигнала и определении координат фазового центра испытуемой антенны.

Недостатком этого способа является ограниченная область применения - только для рупорных антенн, а также значительная трудоемкость проведения измерений при необходимости определения фазового центра для спектра частот.

Известен способ определения фазового центра элемента антенной решетки , заключающийся в том, что устанавливают две антенны в дальней зоне, зондируют элемент испытуемой антенной решетки, для чего поворачивают его вокруг оси вращения, в каждом положении излучают сигналы образцовой антенной, принимают их испытуемой антенной, оценивают амплитуду и фазу принятых сигналов и находят вектор центра фазы, минимизирующий различие между измеренным и вычисленным рисунками фазы.

Недостатком способа является высокая трудоемкость проведения измерений при необходимости определения фазового центра антенны для спектра частот.

Наиболее близким к заявляемому является способ определения положения фазового центра антенны , заключающийся в том, что устанавливают две антенны в дальней зоне, зондируют испытуемую антенну, для чего поворачивают ее вокруг оси вращения на выбранные углы, в каждом положении излучают сигналы с постоянными характеристиками одной, принимают их измерительной антенной и оценивают принятые сигналы, фазовый центр испытуемой антенны находят на пересечении осей фазового центра. При этом измерительную антенну размещают последовательно в двух точках электромагнитного поля, при каждом положении измеряют амплитуды и фазы принятого сигнала для трех ортогональных компонент вектора электрического поля, определяют две оси фазового центра, начинающиеся в фазовых центрах вспомогательной антенны (в двух положениях) и заканчивающиеся в фазовом центре испытуемой антенны.

Недостатками способа являются пригодность только при эллиптической поляризации антенны, низкая точность, а также высокая трудоемкость проведения измерений при необходимости определения фазового центра для спектра частот. Низкая точность объясняется тем, что точное определение компонент вектора электрического поля является непростой задачей, а нахождение точки пересечения двух не точно известных векторов из дальней зоны приводит к еще более существенным погрешностям.

Знание точного положения фазового центра антенны имеет большое значение для высокоточных навигационных измерений, поскольку ошибки в определении положения фазового центра непосредственно влияют на точность определения навигационных параметров объектов. Мероприятия по уточнению положения фазового центра принимаются при проектировании, изготовлении и калибровке антенн. В современных антенных системах широко применяются антенные решетки, для которых само понятие «фазовый центр» становится сложным, а тем более его измерение . Например, в Глобальных Системах Позиционирования (GPS) точные эфемериды, поставляемые Международной Геодинамической Службой (IGS) и другими организациями, передают информацию о центре массы спутника, а при генерации и использовании таких эфемерид для обработки GPS данных необходимо знать точное положение фазового центра антенны по отношению центру масс спутника с учетом конструктивных погрешностей изготовления антенн и спутника, влияния самого навигационного спутника на работу антенны, углов наблюдения, поляризации и других факторов. Для повышения точности прибегают к калибровке . Кроме того, современные антенные системы часто используют сложные, немонохроматические сигналы, что существенно затрудняет антенные измерения.

Задачами, решаемыми заявляемым способом, является быстрое и точное определение положения фазового центра испытуемой антенны для спектра частот.

Для решения указанной задачи способ определения положения фазового центра антенны, заключается в том, что устанавливают две антенны в дальней зоне, зондируют испытуемую антенну, для чего поворачивают ее вокруг оси вращения на выбранные углы, в каждом положении излучают сигналы с постоянными характеристиками одной, принимают их другой антенной и оценивают принятые сигналы, фазовый центр испытуемой антенны находят на пересечении осей фазового центра, для зондирования используют СШП сигналы, проводят предварительное зондирование, при котором оценивают и выбирают минимальный размер временного окна приема и его положение относительно момента излучения такие, чтобы принятые сигналы попадали в окно приема, проводят основное зондирование, при котором принимают сигналы в выбранном временном окне приема, оценивают разности времен распространения сигналов между фазовыми центрами антенн при разных углах поворота испытуемой антенны и находят параллельную оси вращения ось фазового центра испытуемой антенны, относительно которой время распространения сигналов между фазовыми центрами антенн не зависит от угла поворота испытуемой антенны, выбирают другую ось вращения испытуемой антенны, повторяют предварительное и основное зондирования и находят другую ось фазового центра.

При основном зондировании для грубого определения положения фазового центра антенны в качестве оценки разности времен распространения сигналов между фазовыми центрами антенн используют различие в их положении во временном окне приема,

Для точного определения положения фазового центра антенны для оценки разности времен распространения сигналов между фазовыми центрами антенн при основном зондировании вычисляют их фазочастотный спектр, а координаты фазового центра испытуемой антенны вычисляют для спектра частот.

Существенными отличиями заявляемого способа по сравнению с прототипом являются:

В качестве зондирующих используют СШП сигналы. Такие сигналы позволяют ускорить антенные измерения за счет их проведения одновременно в широком спектре частот.

В прототипе применяются монохроматические сигналы. Работа с такими сигналами технически проще и очевиднее, так как характеристики антенны снимаются непосредственно на каждой частоте по отдельности. Однако при необходимости определения положения фазового центра для спектра частот трудоемкость измерений многократно возрастает.

Проводят предварительное зондирование, при котором оценивают и выбирают минимальный размер временного окна приема и его положение относительно момента излучения такие, чтобы принятые сигналы попадали в окно приема. Выбор фиксированного временного окна приема позволяет учесть все информативные части принятого сигнала при всех выбранных углах поворота испытуемой антенны, дает возможность проводить дальнейшие измерения в одинаковых условиях и обеспечивает точность вычисления фазочастотной характеристики принятого сигнала при последующей обработке результатов измерений. Минимальный размер окна приема также обеспечивает повышение точности измерений, поскольку при выбранном количестве отсчетов в окне приема шаг дискретизации по времени оказывается минимальным. Кроме того, в результате выбора минимального временного окна приема из-за разницы хода в него не попадают сигналы, отраженные от посторонних объектов в зоне исследований, а за счет этого снижается стоимость антенных измерений.

В прототипе прием сигнала происходит непрерывно, не синхронизовано с моментом излучения. При этом фаза монохроматического сигнала определяется неоднозначно, что приводит к необходимости использования специальных схем, например, АС СССР №1125559. Кроме того, решение проблемы с побочными отражениями в этом случае сопровождается серьезными материальными затратами на создание безэховых камер, поглощающих покрытий, работающих лишь в определенных диапазонах частот, проведение дорогостоящих облетных измерений и т.д.

Проводят основное зондирование, при котором принимают сигналы в выбранном временном окне приема, оценивают разности времен распространения сигналов между фазовыми центрами антенн при разных углах поворота испытуемой антенны и находят параллельную оси вращения ось фазового центра испытуемой антенны, относительно которой время распространения сигналов между фазовыми центрами антенн не зависит от угла поворота испытуемой антенны. Главным отличием является использование разностей во временах распространения сигналов, что позволяет перейти к измерениям положения фазового центра относительно оси вращения испытуемой антенны.

В прототипе находят оси фазового центра, исходящие из мест расположения измерительной антенны в дальней зоне, что порождает существенные погрешности измерений.

Выбирают другую ось вращения испытуемой антенны, повторяют предварительное и основное зондирования и находят другую ось фазового центра. Другая ось вращения может быть выбрана произвольно, в том числе и под углом 90° к первой оси, что повышает точность нахождения точки пересечения осей, а, следовательно, координат фазового центра.

В прототипе оси фазового центра расположены в рамках ограниченного угла основного лепестка диаграммы направленности, что снижает точность нахождения точки пересечения указанных осей.

В качестве оценки разности времен распространения сигналов при основном зондировании используют различие в их положении во временном окне приема. Такой способ позволяет лишь грубо оценить положение фазового центра без учета зависимости положения фазового центра от частоты.

В прототипе отсутствие синхронизации между моментами излучения и приема не позволяет найти отличие во временах приема сигнала при поворотах испытуемой антенны.

Более точное положение фазового центра может быть получено тогда, когда для оценки разности времен распространения сигналов при основном зондировании вычисляют их фазочастотный спектр. Разности фаз принятого сигнала на каждой частоте могут быть легко пересчитаны в разности времен распространения сигнала, а координаты фазового центра испытуемой антенны вычисляют для спектра частот. Такой подход позволяет снизить трудоемкость работ за счет того, что за один цикл измерений удается получить спектр координат фазовых центров испытуемой антенны.

В прототипе определяется фазовый центр антенны для одной частоты. При необходимости получить указанные результаты для спектра частот возникают большие временные и аппаратурные затраты на перестройку генераторов зондирующих сигналов, фазометров и других элементов устройств, реализующих такой способ.

Заявляемый способ иллюстрируют следующие графические материалы:

Фиг.1 - Схема для грубого расчета положения фазового центра антенны.

Фиг.2 - Схема для точного расчета положения фазового центра антенны.

Фиг.3 - Устройство, реализующее заявляемый способ.

Рассмотрим возможности реализации заявляемого способа.

Перед началом измерений, фиг.1, устанавливают две антенны в дальней зоне, т.е. выбирают расстояние L между предполагаемыми фазовыми центрами испытуемой 1 и измерительной 2 антенн, причем само расстояние L не имеет значения, поскольку измерения проводятся относительно оси вращения испытуемой антенны. Характеристики измерительной антенны также не имеют значения, поскольку ее амплитудно-частотная характеристика, положение ее фазового центра также не влияют на измерения. Выбирают углы поворота испытуемой антенны так, чтобы в секторе измерений не было нулей амплитудной диаграммы направленности испытуемой антенны, которым соответствуют скачки фазы. В качестве излучающей может выступать испытуемая или измерительная антенна, соответственно другая антенна оказывается принимающей.

Для измерений излучают СШП сигналы одной и принимают другой антенной. В качестве таких сигналов могут использоваться одинаковые (с постоянными характеристиками) короткие видеоимпульсы длительностью от долей до единиц пикосекунд, которые имеют спектр от нуля до десятков гигагерц. Этот импульс может быть принят стробоскопическим преобразователем - устройством, которое в фиксированном по отношению к моменту излучения зондирующего сигнала окне приема из принятого сигнала выделяет один отсчет в заданный момент времени. Зондирование такими же импульсами при одном и том же положении антенн повторяется многократно (тысячи раз) с произвольной частотой, а моменты времени выделения отсчета смещают по окну приема. В результате такого способа приема происходит масштабно-временное преобразование, т.е. принятый зондирующий «быстрый» импульс воспринимается как совокупность его отсчетов, но в другом масштабе времени. При этом появляется возможность обрабатывать каждый из отсчетов «медленно», с использованием обычных аналого-цифровых преобразователей и компьютерных способов обработки.

Пусть перед началом измерений, фиг.1, ось вращения 0Y испытуемой антенны 1 перпендикулярна плоскости XOZ и не совпадает с параллельной ей осью фазового центра, проходящей через точку Z ц (ФЦ). При повороте испытуемой антенны 1 на угол α i изменяется расстояние между фазовыми центрами антенн 1 и 2, а следовательно, время распространения СШП сигнала между ними на величину ΔТ и фаза принятого сигнала на ΔФ(f). Величина изменения фазы зависит от рассматриваемой частоты f.

Проводят предварительное зондирование, при котором поворачивают испытуемую антенну на выбранные углы. Излучают и принимают СШП сигналы. Подбирают время начала окна приема сигнала антенной 2 так, чтобы при любых углах поворота α испытуемой антенны 1 наблюдалось начало импульса, принятого антенной 2. Затем изменяют и находят минимальную длительность временного окна приема такую, чтобы при любых углах поворота испытуемой антенны 1 весь принятый импульс попадал в него.

Проводят основное зондирование, при котором принимают СШП сигналы в выбранном временном окне приема. Задача основного зондирования состоит в нахождении оси фазового центра, проходящей через фазовый центр (ФЦ) и параллельной оси вращения 0 антенны 1.

Для грубой оценки положения оси фазового центра антенны 1 оценивают разности времен распространения сигналов между фазовыми центрами антенн 1 и 2 при разных углах поворота испытуемой антенны 1. В частности, можно найти ось 0Z (базовую ось), проходящую через ось вращения антенны 1, фазовый центр антенны 2 и пересекающую ось фазового центра антенны 2 в точке Z ц. Для этого находят такое угловое положение антенны 1, при котором принятый сигнал наиболее близок к началу окна приема (если фазовый центр смещен вперед по отношению к оси вращения) или к концу окна приема (если фазовый центр находится сзади оси вращения). Затем поворачивают антенну 2 на известный угол α i и определяют разность ДТ времен распространения СШП сигнала в указанных двух положениях. Из геометрических соображений можно определить неизвестную величину:

Z ц =СΔТ/(1-cos(α i)),

где С - скорость света. Величину Z ц и положение оси 0Z однозначно определяют положение оси фазового центра.

Низкая точность описанного способа определения оси фазового центра объясняется следующими обстоятельствами:

1. Положение фазового центра антенны зависит от частоты, а поэтому координата Z ц найденная для СШП сигнала, является лишь неким «интегральным приближением» к фазовому центру, но может использоваться, например, при измерениях дальности.

2. Оценка временного положения СШП сигнала в окне приема неоднозначна, поскольку при поворотах антенны 1 изменяется форма принятых сигналов, так что какой момент принятого сигнала следует считать моментом приема, не очевидно.

3. Положение оси 0Z определяется не точно, поскольку в окрестности α i =0 разность ΔT времен распространения СШП сигнала меняется мало.

Для решения последней проблемы можно провести измерения по крайней мере для трех разных угловых положений антенны 1 и решить, как будет показано ниже, соответствующую систему уравнений.

Точное определение положения оси фазового центра возможно только в отдельности для каждой частоты f j требуемого спектра частот . Для решения этой задачи, используя дискретное преобразование Фурье (ДПФ), вычисляют фазочастотный спектр принятого сигнала при нескольких угловых положениях антенны 1. При n=3 методика расчета положения оси фазового центра антенны 1 для одной частоты f j состоит в следующем. Пусть ось фазового центра антенны 1 на частоте f j находится на расстоянии Z ц от оси вращения Y ортогональной системы координат XYZ. По определению фазового центра расстояние Zn остается неизменным при любых выбранных углах ее поворота. Начальное угловое положение антенны 1, фиг.2, отстоящее на неизвестный от оси 0Z угол α 0 , будем считать базовым, при этом ось фазового центра антенны 1 проходит через точку Z ц0 с неизвестными координатами. Проводят зондирование, по результатам которого с использованием ДПФ вычисляют фазу Ф 0 (f j) принятого сигнала. При повороте антенны 1 вокруг оси 0Y относительно базового положения на известный угол α i ось фазового центра будет проходить через точку Z ц1 . В результате аналогичных зондирований и вычислений находят фазу Ф 1 принятого сигнала на той же частоте, но при другом положении антенны 1. Разность этих фаз позволяет оценить разность времен распространения сигналов:

ΔТ 1 =(Ф 0 -Ф 1)/2πf j .

При повороте антенны 1 на известный угол α 2 относительно базового положения ось фазового центра антенны проходит через точку Z ц2 . Аналогичным образом вычисляют разность времен распространения сигналов между базовым и текущим положениями оси фазового центра ΔT 2 . В результате трех зондирований может быть составлена система двух уравнений:

ΔT 1 =Z ц (cosα 0 -cos(α 0 -α 1))/C

ΔT 2 =Z ц (cosα 0 -cos(α 0 -α 2))/C,

где С - скорость света.

Эта система содержит два неизвестных α 0 и Z ц. и может быть решена известными методами. Полученные величины α 0 и Z ц являются полярными координатами оси фазового центра антенны 1 для частоты f j относительно оси ее вращения 0.

Аналогичные вычисления проводят для всех частот f j спектра частот . Для повышения точности вычислений количество углов поворота испытуемой антенны 1 выбирают большим трех, тогда система уравнений становится избыточной, а ее решение может быть получено, например, методом наименьших квадратов (МНК).

Фазовый центр антенны 1 может быть расположен не только на плоскости XOZ, но и отстоять от нее на величину Y ц. Для нахождения пространственного положения фазового центра антенны 1 изменяют ось ее вращения. В качестве новой оси может быть выбрана ось 0Х. Повторяя описанные выше измерения и вычисления, находят вторую ось фазового центра. В рассматриваемом случае вторая ось вращения антенны 1 перпендикулярна первой. В идеальном случае найденные оси фазового центра пересекаются. Вычисляют точку пересечения указанных осей, которая считается фазовым центром антенны 1. В реальных условиях найденные оси оказываются перекрещивающимися. В этом случае находят фазовый центр антенны 1, минимизируя расстояние между осями, например, по МНК.

Таким образом, заявляемый способ позволяет быстро и точно определить положение фазового центра испытуемой антенны для всех выбранных частот. Полученные координаты фазовых центров позволяет использовать сложные сигналы при радиолокационных измерениях, учитывать вариации положения фазового центра, а за счет этого повысить точность измерений с использованием калиброванной антенны.

Устройство, реализующее заявляемый способ, изображено на фиг.3, где:

1 - испытуемая антенна;

2 - измерительная антенна;

3 - опорно-поворотное устройство;

4 - компьютер;

5 - линия задержки;

6 - генератор зондирующих сигналов;

7 - стробоскопический приемник;

8 - аналого-цифровой преобразователь;

9 - вход ручного управления задержкой.

Испытуемая антенна 1 является объектом измерений с неизвестным положением фазового центра. Измерительная антенна 2 предназначена для проведения измерений, ее характеристики могут быть неизвестны, поскольку не влияют на точность из-за относительного характера измерений.

Опорно-поворотное устройство 3 предназначено для вращения антенны 1 на известные углы под управлением кодовых посылок от компьютера 4.

Компьютер 4 управляет работой устройства, обрабатывает результаты измерений и вычисляет координаты фазового центра испытуемой антенны 1.

Линия задержки 5 предназначена для выбора и фиксации окна приема зондирующих сигналов, а также для изменения положения отсчетов принятого сигнала во временном окне приема. Линия задержки содержит блоки грубой задержки и точной задержки. Первый блок позволяет задержать момент излучения СШП сигнала относительно момента его приема, т.е. задает начало окна приема. Он может быть выполнен на генераторе тактовых сигналов и цифровом счетчике, число пересчета которого управляется от компьютера 4. Блок точной задержки состоит из цифроаналогового преобразователя и диода с накоплением заряда. Код, поступающий от компьютера 4, устанавливает порог срабатывания диода, который изменяет задержку запускающего сигнала.

Генератор зондирующих сигналов 6 формирует СШП сигналы.

Стробоскопический приемник 7 выделяет из принятого сигнала один отсчет по стробирующему сигналу.

Аналого-цифровой 8 преобразователь предназначен для перевода отсчетов принятого сигнала в цифровую форму.

Вход ручного управления задержкой 9 предназначен для выбора окна приема при предварительном зондировании.

Испытуемая 1 и измерительная антенны 2 устанавливаются в дальней зоне на ориентировочно известном расстоянии L. Испытуемая антенна 1 крепится на опорно-поворотном устройстве 3 с фиксированной осью вращения. Будем считать, что испытуемая антенна 1 является излучающей, а измерительная антенна 2 - приемной. Перед зондированиями компьютер 4 путем посылки управляющих кодовых сигналов в опорно-поворотное устройство 3 устанавливает требуемые углы α i поворота измеряемой антенны 1 в рамках выбранного диапазона.

Для стробоскопического приема СШП сигнала изменяют величину точной задержки в блоке 5. В результате чего момент излучения антенной 1 смещается относительно фиксированного момента приема антенной 2, а стробоскопический приемник 7 выделяет другой (по времени) отсчет принятого сигнала. Диапазон величин точной задержки определяет длительность окна приема, а шаг - точность измерения. Многократно изменяя величину точной задержки, осуществляют масштабно-временное преобразование и получают все отсчеты принятого СШП сигнала, которые отображают на экране монитора компьютера 4.

При зондированиях запускающий сигнал от компьютера 4 поступает через линию задержки 5 к генератору зондирующих СШП сигналов 8, а также по кабелю длиной, приближенно равной расстоянию между антеннами L - к стробоскопическому преобразователю 7 и аналого-цифровому преобразователю 8. СШП сигнал, излученный антенной 1, поступает к антенне 2 с задержкой на время распространения при расстоянии L между антеннами 1 и 2.

При предварительном зондировании сначала подбирают величину грубой задержки в блоке 5, а возможно, и длину упомянутого выше кабеля так, чтобы запускающий сигнал поступил на стробоскопический приемник 7 непосредственно перед поступлением в него СШП сигнала при любых углах поворота антенны 1. Для решения этой задачи компьютером 4 через опорно-поворотное устройство 3 изменяют углы поворота антенны 1, наблюдают на мониторе компьютера 4 изменение положения начала принятого сигнала в окне приема. Вручную, через вход 9 компьютера 4 изменяют величину грубой задержки в блоке 5. Затем через вход 9 компьютера 4 изменяют величину и шаг точной задержки в блоке 5, добиваясь полного приема СШП сигнала. В результате описанных действий фиксируют величину грубой задержки (момент начала приема), а также шаг и величину точной задержки (точность и длительность окна приема).

При грубом определении положения оси фазового центра антенны 1 оценивают положение принятых сигналов при известных углах поворота α i антенны 1 и по описанным выше алгоритмам вычисляют в компьютере 4 координаты точки, через которую проходит ось фазового центра.

При точном определении оси фазового центра в компьютере 4 вычисляют фазочастотный спектр принятого сигнала и находят координаты точек, через которые проходят оси фазовых центров на соответствующих частотах.

Изменяют ось вращения антенны 1 и повторяют измерения.

Фазовые центры антенны 1 определяют для каждой частоты отдельно как точки пересечения соответствующих осей фазовых центров.

Таким образом, заявляемый способ может быть реализован на современной элементной базе и позволяет быстро и точно определить координаты фазовых центров испытуемой антенны для спектра частот. Знание этих координат позволяет повысить точность антенных измерений с использованием измеряемой антенны.

ЛИТЕРАТУРА

1. Драбкин А.Л., Зузенко В.Л. Антенно-фидерные устройства. М.: Сов. радио, 1961, с.70-71.

2. АС СССР №364908.

3. АС СССР №1125559.

4. Патент JP №2000321314.

5. АС СССР №1702325.

6. Патент JP 2183172.

7. Калибровка фазовых центров антенны, GPS World, Май 2002, Издатель: Advanstar Communications Inc 859 Willamette Street, Eugene, Oregon 97401-6806, USA.

8. Рябинин Ю.А. Стробоскопическое осциллографирование. - М.: Сов. радио, 1972.

1. Способ определения положения фазового центра антенны, заключающийся в том, что устанавливают две антенны так, чтобы одна по отношению к другой находилась в дальней зоне, зондируют испытуемую антенну, для чего поворачивают ее вокруг оси вращения на выбранные углы, в каждом положении излучают сигналы с постоянными характеристиками одной, принимают их другой антенной и оценивают принятые сигналы, фазовый центр испытуемой антенны находят на пересечении осей, проходящих через ее фазовый центр, отличающийся тем, что для зондирования используют сверхширокополосные сигналы, проводят предварительное зондирование, при котором оценивают и выбирают минимальный размер временного окна приема и его положение относительно момента излучения такие, чтобы принятые сигналы попадали в окно приема, проводят основное зондирование, при котором принимают сигналы в выбранном временном окне приема, оценивают разности времен распространения сигналов между фазовыми центрами антенн при разных углах поворота испытуемой антенны и находят параллельную оси вращения ось, проходящую через фазовый центр испытуемой антенны, относительно которой время распространения сигналов между фазовыми центрами антенн не зависит от угла поворота испытуемой антенны, выбирают другую ось вращения испытуемой антенны, повторяют предварительное и основное зондирования и находят другую ось, проходящую через фазовый центр испытуемой антенны.

Изобретение относится к области радиолокации и предназначено для аттестации амплитудного и фазового распределений электромагнитного поля (далее поля) в измерительной зоне установок для измерения эффективной поверхности рассеяния (ЭПР) радиолокационных целей

Изобретение относится к антенным измерениям с использованием сверхширокополосных сигналов и может быть использовано при разработке, испытаниях и калибровке антенн

Вычисление фазового центра гофрированного антенного рупора

Вычисление фазового центра является задачей очень трудоемкой в плане точности. Местоположение фазового центра зависит от многих параметров, таких как направление поляризации, направление угла сканирования и ширина апертуры. Устройством, смоделированным в данном примере, является цилиндрический гофрированный рупор с линейной вертикальной поляризацией.

Для получения точных результатов крайне важны правильные настройки. Поляризация Е-поля совпадает с Е-плоскостью (вертикальная ориентация). На рисунке 2 представлена phi компонента Е-поля в трехмерном представлении. Можно заметить, что данный компонент поля хорошо определен вдоль горизонтального направления, которое представляет в данном случае собою Н-плоскость. Параметры настройки фазового центра, в соответствии с которыми представлено данное изображение, приведены на этом же рисунке слева. Альтернативно, если выбрана Е-плоскость, должен быть выбран компонент thetа Е-поля. Заметьте, что фазовые центры Е и Н-полей отличаются друг от друга.

Рисунок 2 – Настройка направления сканирования поля в Н-плоскости

При расчете постпроцессором CST MWS поля заданного устройства, график фазы может быть построен как в трехмерном формате, так и вдоль определенного направления. Затрачиваемая постпроцессором мощность объясняется тем, что при вычислении учитывается тот факт, что начало координат поля может быть изменено. Эта особенность используется для корректировки и/или установки начальных координат поля в местоположение вычисленного центра фаз. В этом случае изменение фазы будет отображено в двумерном представлении и для определенного угла апертуры. На рисунке 3 представлено, как центр поля установлен в три различные положения – в местоположение фазового центра, а также +/- 5% от полной длины рупора (смещение вдоль оси z).


Рисунок 3 – Три различных местоположения начала координат поля

На рисунке 4 представлены трехмерные графики Е-поля для трех различных местоположений начала координат поля, рассмотренных ранее. На среднем графике изображено наименьшее изменение фазы вдоль горизонтального направления. Более наглядное представление изменение фазы изображено на рисунке 5, на котором фаза представлена вдоль Н-плоскости. Наклон фазы является индикатором того, что было произведено установление центра фазы при моделировании и/или повторное установление антенны в реальной установке измерения.

Рисунок 4 – Слева направо: фазовый центр, сдвинутый на +5%, в центре и на -5%

Рисунок 5 – Изменение фазы вдоль Н-плоскости

Позиция фазового центра меняется согласно рассматриваемому углу апертуры. Чем меньше угол апертуры, тем меньше изменение местоположения фазового центра. Этот факт отображен на рисунке 6. И снова отметьте, что оценка фазового центра в Е и Н плоскости отличаются. Среднеквадратичное отклонение является еще одним критерием точности определения фазового центра (рисунок 7).

Рисунок 6 – Зависимость фазового центра от угла апертуры

Рисунок 7 – Чем меньше угол апертуры, тем меньше среднеквадратичное отклонение

Сравнение теории и практики

На двух различных частотах (+/-2% относительно средней частоты) был произведен расчет фазового центра. Поляризация – в Е-плоскости. Антенна вращается в Н-плоскости (азимутальной). Depending on the phase-slope versus scan angle the antenna is slightly repositioned along its propagation axis and measured again until a flat phase was found. На рисунке 8 представлены фактические местоположения фазовых центров. А на рисунке 9 представлена эта же картина, но в увеличенном виде. Как видно, полученные при моделировании значения достаточно хорошо согласуются с практическими данными.

Рисунок 8 – Фактическое расположение фазовых центров гофрированного рупора

Рисунок 9 – Отклонение теоретических значений от практических; отметьте, что местоположение фазового центра, вычисленного для разных частот - различно

Антенны – это устройства, согласующие искусственную систему канализации электромагнитных волн (ЭМВ) с окружающей естественной средой их распространения.

Антенны являются неотъемлемой составной частью любой системы радиосвязи, которую используют электромагнитные волны в технологических целях. Помимо согласования между собой искусственных и естественных сред распространения ЭМВ, антенны могут выполнять ряд других функций, важнейшей из которых является пространственная и поляризационная селекция принимаемых и излучаемых ЭМВ.

Справка:

Согласованные системы – это системы, которые передают друг другу максимум предназначенной для передачи электромагнитной мощности.

Различают приемные и передающие антенны.

Передающие антенны

Структурная схема

1 – вход антенны, к которому подключен питающий волновод от передатчика;

2 – согласующее устройство, которое обеспечивает режим бегущих волн в питающем волноводе;

3 – распределительная система, которая обеспечивает требуемое пространственное амплитудно-фазовое распределение излучающих полей;

4 –излучающая система (излучатель), обеспечивает заданные поляризационные и направленные излучения ЭМВ.

Приемные антенны

Структурная схема

1 – выход антенны, к которому подключен волновод, соединяющий антенну с приемником;

2 – согласующее устройство;

3 – интегратор – устройство, обеспечивающее взвешенное когерентно-синфазное суммирование пространственных электромагнитных полей;

4 – принимающая система, обеспечивает поляризационную и пространственную селекцию ЭМВ, поступающих в антенну из окружающей ее естественной среды.

Справка:

    Элементы структуры передающей и приемной антенн, обозначенные одинаковыми цифрами, могут иметь идентичные конструкции, в следствии чего в отрыве от системы, в которой антенны функционируют, отличить передающую антенну от приемной и наоборот невозможно.

    Существуют приемно-передающие антенны.

Классификация антенн

Для систематизации разнообразных типов антенн их объединяют по ряду общих признаков. Классификационные признаки могут быть:

    рабочий диапазон волн;

    общность конструкции;

    принцип роботы;

    назначение.

Классы могут быть разбиты на подклассы и т. д.

По назначению все антенны делятся на два больших класса:

    передающие;

    приемные.

В эти два класса входят подтипы:

    антенны стоячей волны;

    антенны бегущей волны;

    апертурные антенны;

    антенны с обработкой сигналов;

    активные антенные решетки;

    сканирующие антенные решетки.

Основные задачи теории антенн

Существует две задачи:

    задача анализа свойств конкретных антенн;

    задача проектирования антенн по заданным исходным требованиям к ним.

Задачу анализа следует решать исходя из условий: искомые ЭМВ должны удовлетворять уравнения Максвелла, граничным условиям на поверхности раздела сред и условиям излучения Зоммерфельда.

В таких жестких условиях постановки решения задач проведение анализа возможно только для некоторых частных случаев (например для симметрического электрического вибратора).

Распространены приближенные методы решения задач анализа, по которым эти задачи разделяют на две части:

Внутреннюю задачу;

Внешнюю задачу.

Внутренняя задача призвана определить распределение токов в антенне реальных или эквивалентных. Внешняя задача состоит в определении поля излучения антенны по известному распределению токов ней. При решении внешней задачи широко используется метод суперпозиции, заключающийся в разбиении антенны на элементарные излучатели и последующее суммирование полей.

Задача проектирования антенны состоит в нахождении геометрической формы и размеров конструкции, обеспечивающие ее требуемые функциональные свойства. Решение задач проектирования (синтеза) антенн возможно:

    посредством применения результатов анализа конкретных типов антенн и метода последовательных приближений, то есть путем изменения параметров (этап параметрической оптимизации) с последующим сравнением электрических характеристик, полученных таким образом новых вариантов известных антенн;

    посредством прямого синтеза, то есть минуя этап параметрической оптимизации. В этом случае задачи проектирования антенн разделяют на две подзадачи:

    классическая задача синтеза;

    задача конструктивного синтеза.

Первая состоит в описании амплитудно-фазового распределения тока (или поля) на излучателе антенны, которая обеспечивает заданные функциональные свойства антенн. Решение данной подзадачи еще не определяет конструкцию антенны, оно определяет только требования к ее распределению.

Вторая направлена на отыскание полной геометрии антенны по заданному амплитудно-фазовому распределению тока (или поля) на излучателе антенны. Эта задача значительно сложнее первой и конструктивно не однозначна, часто ее решают приближенно.

Однако для некоторых типов антенн разработана строга теория конструктивного синтеза.

Передающие антенны

Их характеристики и параметры

Структура электромагнитного поля (ЭМП) антенны

Каждую антенну можно рассматривать как систему элементарных излучателей, сосредоточенных в некотором ограниченном объеме линейного пространства (), ее ЭМ поле как суперпозицию ЭМ полей, составляющих ее элементарных излучателей. Для выявления структуры ЭМП антенны рассмотрим структуру ЭМП элемента прямолинейного гармонически изменяющегося с угловой частотой, тока с постоянной амплитудой и длиной этого элементав линейной неограниченной изотропной среде с постоянными параметрами, ,.

– абсолютная диэлектрическая проницаемость среды;

ε – относительная диэлектрическая проницаемость среды;

Электрическая постоянная;

– абсолютная магнитная проницаемость среды;

Относительная магнитная проницаемость среды;

Магнитная постоянная;

– удельная электрическая проводимость среды;

λ – длина волны.

М – точка наблюдения ЭМП;

r – радиальная координата точки М (расстояние от центра сферической системы координат до точки М);

– азимутальная координата точки М;

Меридиональная координата точки М.

Для рассматривания вибратора Герца, расположенного вдоль оси z, середина которого совмещена с центром сферической системы координат, решение уравнения Максвелла имеют вид (1.1), где

Единичные вектора;

момент электрического тока;

Ортогональные комплексные амплитудные составляющие по сферическим координатам,,вектора напряженности электрического поля;

, , - ортогональные комплексные амплитудные составляющие по сферическим координатам ,,вектора напряженности магнитного поля;

- волновое число;

Длина волны в безграничном пространстве.

Из выражений следует, что ЭМП линейного элемента тока представляет собой ортогональные в пространстве волны напряженности электрического и магнитного полей. При этом скорость изменения амплитуды каждой волны определяется относительным удалением точки от центра вибратора.

Различают три области поля:

Для области дальнего поля выражения принимают вид:

В дальней области ЭМП обладает следующими свойствами:

Для воздуха: .

В областях промежуточного и ближнего полей помимо сферической поперечной волны существуют локальные реактивные поля, интенсивность которых очень быстро увеличивается с уменьшением r. Эти поля содержат некоторый запас ЭМ энергии, которой они периодически обмениваются с антенной (с периодом ). Данные поля обусловливают реактивную составляющую входного сопротивления антенны.

Свойства ЭМП определяют функциональные свойства антенны, а свойства ближнего и промежуточного ЭМП определяют стабильность функциональных свойств и широкополосность антенн.

Область дальнего ЭМП часто называют областью излучения, а область ближнего ЭМП – областью индукции.

Для реальных антенн границы областей дальнего, промежуточного и ближнего полей определяют с учетом разности фаз волн, пришедших в точку наблюдения от краев антенны и ее центра.

При допустимой разности фаз в области дальнего поля, равной :

Область дальнего ЭМП будет при ;

Область промежуточного поля ;

Область ближнего поля , где

Расстояние от центра антенны до точки наблюдения;

- максимальный поперечный размер излучающей системы антенны.

Основные характеристики и параметры прередающей антенны

Свойства антенны подразделяются на:

    Радиотехнические;

    Конструктивные;

    Эксплуатационные;

    Экономические;

Функциональные свойствацеликом определяются сигнальными параметрами.

Характеристики и параметры передающей антенны:

    Комплексная векторная характеристика направленности

Комплексная векторная ХНА – это зависимость от направления (поляризация, фаза) электрического поля излученных антенной волн в равноудаленных от нее точках (на поверхности сферы радиуса r).

В общем случае комплексная ХНА состоит из трех сомножителей:

где - сферические координаты точки наблюдения поля излученной антенной волны.

    Амплитудная ХНА

Амплитудная ХНА – это зависимость от направления амплитуды напряженности электромагнитной волны, излученной антенной в равноудаленных от нее точках.

Обычно рассматривают нормированную амплитудную ХНА:

,

где - направление в котором значение амплитудной ХНА максимально.

    Диаграмма направленности антенны (ДНА)

Диаграмма направленности антенны – сечение амплитудной ХНА плоскостями, проходящими через направление или перпендикулярно ему.

Наиболее часто используется сечение взаимно ортогональными плоскостями.

Диаграмма направленности имеет лепестковую структуру. Лепестки характеризуются амплитудой и шириной.

Ширина лепестка ДНА – угол в пределах которого амплитуда лепестка изменяется в допустимых заданных пределах.

Лепестки бывают:

    Главный лепесток;

    Боковые лепестки;

    Задний лепесток.

Ширину лепестков определяют по нулям или по уровню половины максимальной мощности.

    По полю = 0.707;

    По мощности = 0.5;

    В логарифмическом масштабе = -3 дБ.

Нормированная амплитудная ХНА по мощности связана с амплитудной ХНА по полю соотношением:

Для изображения ДНА используют полярные и прямоугольные системы координат и три вида масштаба:

    Линейный (по полю);

    Квадратичный (по мощности);

    Логарифмический

Фазовая ХНА

Фазовая ХНА - это зависимость от направления фазы гармонической электромагнитной волны в области дальнего поля в равноудаленных от начала координат точках в фиксированный момент времени.

Справка:

Фазовый центр антенны – точка в пространстве, относительно которой значение фазы в дальней зоне не зависит от направления и изменяется скачком на при переходе от одного лепестка ХНА к другому.

Для точечного источника электромагнитной волны, излучающего сферическую волну, поверхность равных фаз имеет вид сферы.

    Поляризационная ХНА

Электромагнитная волна характеризуется поляризацией.

Поляризация – пространственная ориентация вектора Е, рассматриваемая в любой фиксированной точке дальнего поля в течении одного колебания.

В общем случае конец вектора Е за один период колебания в любой фиксированной точке пространства описывает эллипс, который расположен в плоскости, перпендикулярной направлению распространения волны (эллипс поляризации).

Поляризация характеризуется:

    параметрами эллипса;

    пространственной ориентацией эллипса;

    направлением вращения вектора Е.

    Сопротивление излучения антенны

Сопротивление излучения антенны – это волновое сопротивление окружающего антенну пространства, перещитанное ею на вход, или в любое сечение питающего ее волновода, где понятие полного тока имеет смисл и может быть определено.

Сопротивление излучения может бать посчитано по формуле:

сс ,

где I – значение полного тока в данном месте антенны или питающего ее двухпроводной линии, которая эквивалентна питающему полому волноводу.

    Входное сопротивление антенны

Входное сопротивление антенны – это отношение комплексных амплитуд гармонических напряжений и токов на входных клеммах антенны.

Входное сопротивление антенны характеризует антенну, как нагрузку для питающей линии.

Данный параметр используют в основном для линейных антенн, т.е. антенн, у которых входные напряжения и токи имеют ясный физический смысл и могут быть измерены.

Для антенн СВЧ обычно задают размеры сечения их входного волновода.

    Коэффициент полезного действия (КПД) антенны

Определяет эффективность передачи антенной в окружающие пространство.

Сопротивление потерь

Справка:

С увеличением f КПД антенны увеличивается от единиц процентов на длинных волнах, до 95-99% на СВЧ.

    Электрическая прочность и высотность антенны

Электрическая прочность антенны – способность антенн выполнять свои функции без электрического пробоя диэлектрика в ее конструкции или окружающей среды при увеличении поступающей на ее вход мощности электромагнитной волны.

Количественно электрическую прочность антенны характеризуют предельно допустимой мощностью и соответствующей ей критической напряженностью электрического поля, при которых начинается пробой.

    Высотность антенны

Высотность антенны – это способность антенн выполнять свои функции без электрического пробоя окружающей атмосферы при увеличении высоты расположения этой антенны при заданной мощности передачи.

Справка:

С увеличением высоты электрическая прочность сначала уменьшается, достигая минимума на высотах 40-100 км, а затем вновь возрастает.

    Диапазон рабочих частот антенны

Интервал частот от f max до f min , в пределах которого ни один из параметров и характеристик антенны не выходит за пределы, указанные в технических условиях.

Обычно диапазон определяется тем параметром, значение которого при изменении частоты раньше других выходит из допустимых пределов. Чаще всего этим параметром оказывается входное сопротивление антенны.

Количественными оценками диапазонных свойств антенны являются полоса пропускания и коэффициент пропускания:

Часто пользуются относительной полосой пропускания

Антенны по параметру делят на:

    Коэффициент направленного действия (КНД)

Коэффициент направленного действия антенны в заданном направлении - это число, показывающие во сколько раз значение вектора Пойнтинга в рассматриваемом направлении в фиксированной точке дальней зоны отличается от значения вектора Пойнтинга в этой же точке если заменить рассматриваемую антенну на абсолютно-ненаправленную (изотропную) антенну при условии равенства их излучаемых мощностей.

Справка:

Обычно указывают максимальное значение КНД антенны в направлении максимума ее излучения.

Вибратор: КНД=0.5;

Полуволновой симметричный вибратор: КНД=1,64;

Рупорная антенна: КНД ;

Зеркальная антенна: КНД ;

Антенны космических аппаратов: КНД ;

Ограничителем верхнего предела КНД являются технологические погрешности изготовления и влияние условий эксплуатации.

Минимальные значения максимумов КНД реальных антенн всегда >1 , т.к. абсолютно ненаправленных антенн не существует.

КНД связан по полю с нормированной амплитудной ХНА :

,

где максимальное значение КНД в направлении максимального излучения антенны, в котором .

КНД показ ывает тот выигрыш в мощности, который обеспечивает применение направленной антенны, но не учитывает тепловые потери в ней.

    Ко э ффициент усиления антенны

Коэффициент усиления антенны в данном направлении – это число, показывающие выигрыш в мощности от применения направленной антенны с учетом тепловых потерь в ней:

    Эквивалентная изотропно-излучаемая мощность

Эквивалентная изотропно-излучаемая мощность - это произведение подводимой к антенне мощности на максимальное значение ее коэффициента усиления.

    Коэффициент рассеивания антенны

Коэффициент рассеивания антенны – это число, показывающие долю излучаемой мощности, приходящейся на долю боковых и задних лепестков.

Определяет мощность, приходящуюся на главный лепесток ХНА

    Действующая длина антенны

Действующая длина антенны- длина гипотетического прямолинейного вибратора с равномерным распределением тока по всей его длине, который в направлении максимума своего излучения создает ту же величину напряженности поля, что и рассматриваемая антенна с той же величиной тока на входе.

В среде с волновым сопротивлением действующая длина антенны определяется выражением.

Инфраструктурный ГНСС-приемник «ФАЗА+» используется в качестве базовой станции, и предназначен для определения относительных координат пунктов с использованием наблюдений навигационных спутников, формирования дифференциальных коррекций и передачи их потребителю. Приемник разработан на базе самых современных технологий, и предназначен для работы в составе сети, но может применяться и как единичная референцная станция.

Масштабируемая сеть

Гибкая программная архитектура позволяет настроить функции приемника в зависимости от поставленных задач, при этом настройка оборудования может осуществляться непосредственно на приемнике, без подключения сторонних устройств, либо через web-интерфейс. Работа со всеми устройствами, включенными в сеть может проводиться удаленно, при этом контроль работы устройств осуществляется в режиме реального времени из командного центра. Интерфейс «ФАЗА+» интуитивно понятен русскоязычному пользователю, что позволяет осуществлять весь спектр монтажных и пусконаладочных работ с минимальными временными затратами, и в полной мере использовать все возможности устройства.

Надежность >99,9%

В условиях расширения спутниковых группировок ГЛОНАСС, Galileo и BeiDou, важным фактором является количество приемных каналов. Наличие 440 каналов гарантирует, что «ФАЗА+» будет работать без необходимости замены или модернизации в течение нескольких десятков лет с минимальным вмешательством оператора. «ФАЗА+» располагает встроенной памятью в 8Гб, что гарантирует от 3 до 6 месяцев (в зависимости от формата хранимых данных) бесперебойной работы. К приемнику могут быть подключены внешние хранилища данных объемом более 1 Тб. В сочетании с аккумуляторной батареей, рассчитанной на 15 часов бесперебойной работы, гарантируется надежная сохранность данных. В случае отказа основного питания или неполадок связи, приемник продолжит работу, и автоматически передаст данные, как только связь будет восстановлена. Кроме того, батареи являются аккумуляторными в полном смысле этого слова. После автономной работы, батареи накопят заряд, и через некоторое время вновь будут готовы к использованию без необходимости замены.

Два сантиметра по высоте в секунду

«ФАЗА+» существенно расширяет возможности работы в режиме RTK, и, в составе сети, позволяет определять координаты в реальном времени с точностью с.к.о. 8мм в плане и с.к.о. 15мм по высоте. «ФАЗА+» может использоваться как для уплотнения, расширения или модернизации существующих сетей, так и для создания новых, независимо от их масштаба «ФАЗА+» является технологичным, надежным и при этом доступным отечественному профессионалу инфраструктурным ГНСС-приемником премиум-класса. При стационарной установке приемника, например, в качестве компонента референцной ГНСС-станции, вам может потребоваться проведение монтажных работ. Мы готовы предложить вам установочный комплект , состоящий из наиболее часто востребованных материалов при установке референцной станции.

Функциональность приемника ФАЗА+

В базовой поставке ГНСС-приемник ФАЗА+ оснащен минимальным набором функций. Среди них - поддержка ГЛОНАСС, встроенная память для хранения измерений объемом 2 Гб, передача потоков измерительной информации в формате RT27. Для простоты выбора мы собрали три основных комплекта опций, расширяющих функции каждого конкретного приемника ФАЗА+: Минимум, Оптимум и Максимум. Вариант Минимум подойдет в случае ограничения по бюджету проекта, вариант Максимум устроит пользователей, не привыкших идти на компромисс, а вариант Оптимум является гармоничным выбором наиболее востребованных функций. Эти комплекты опций не являются фиксированными: в любой момент вы можете дополнить ваш приемник той или иной функцией. А если приемник уже используется, то вам не потребуется снимать приемник с места его установки: включение функций производится дистанционно вводом специальной команды через веб-интерфейс управления. Наше предложение не ограничивается этими тремя комплектами опций: вы можете выбрать те или иные функции в зависимости от потребностей и получить конфигурацию приемника, подходящую именно вам. Свяжитесь с нами, и мы поможем подобрать наиболее подходящий вариант.

Техническая информация

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ФАЗА+

Наименование характеристики Показатель
Отслеживаемые спутниковые навигационные системы GPS, ГЛОНАСС, Galileo, BeiDou, SBAS, OmniSTAR
Характеристики слежения
Число каналов 440
GPS* L1/L2/L2C/L5
ГЛОНАСС* L1 ПТ и открытый ВТ коды, L2 ПТ и открытый ВТ коды
Galileo* GIOVE-A, GIOVE-B
SBAS* L1 C/A и L5, поддержка WAAS, EGNOS и MSAS
BeiDou*
L-band* OmniSTAR VBS/HP/XP
* Имеется возможность управления приемом сигналов от спутниковых систем (включение, отключение).
Точность определения местоположения, с.к.о.
- кодовый дифференциальный режим Плановое определение: 0,25 м + 1 мм/км
Высотное определение: 0,50 м + 1 мм/км
- режим статики высокой точности Плановое определение: 3 мм + 0.1 мм/км
Высотное определение: 3.5 мм + 0.4 мм/км
- режимы Статика и Быстрая статика Плановое определение: 3 мм + 0.5 мм/км
Высотное определение: 5 мм + 0.5 мм/км
- кинематическая съемка RTK от одиночной станции, базис до 30 км Плановое определение: 8 мм + 1 мм/км
Высотное определение: 15 мм + 1 мм/км
- в режиме сетевого RTK Плановое определение: 8 мм + 0.5 мм/км
Высотное определение: 15 мм + 0.5 мм/км
Коммуникационные интерфейсы и протоколы
Последовательные порты RS-232 и USB Полный (9-и контактный) разъем для порта RS-232
3-х контактный разъем LEMO для порта RS-232
5-и контактный разъем USB Mini B
Поддержка Bluetooth (802.11b) 2.4ГГц Да, до 3 одновременных подключений
Ethernet 100Base-T Технология PoE Поддержка Прокси сервера Поддержка таблиц маршрутов Сервер NTP, клиент NTP UPnP, Zeroconf Push Email, FTP Push
Протоколы коммуникации с приемником HTTP, HTTPS, TCP, UDP, FTP, NTRIP (вещатель, клиент, сервер)
Хранение и передача файлов измерений
Собственная память до 8 Гб
Внешняя память до 1 Тб
Частота регистрации измерений до 50 Гц
Форматы хранения информации T02, RINEX v.2.x, RINEX v.3.x, BINEX
Протоколы передачи записанных измерений HTTP, FTP, USB, FTP Push, Email Push
Форматы передачи и приема информации
Форматы дифференциальных коррекций CMR, CMR+, CMRx, RTCM 2.1, RTCM 2.2, RTCM 2.3, RTCM 3.0, RTCM 3.1
Необработанные измерения RT17, RT27, BINEX, RTCM 3.x
Информация о позиции и состоянии NMEA-0183 v.2.30, GSOF
Частота передачи информации до 50Гц
Поддержка внешних датчиков
Поддержка внешнего источника опорной частоты 10МГц
Передача сигналов 1PPS Да
Поддержка маркера событий Да
Подключение внешних метеодатчиков Да
Подключение внешних датчиков угла наклона (инклинометров) Да
Размеры и вес
Размеры, мм 265 х 130 х 55
Вес, кг 1,75
Электропитание и энергопотребление
Напряжение, В 9,5-28
Встроенный аккумулятор 7,4 В, 7800 mA/ч, Li-Ion, до 15 часов непрерывной работы
Встроенная защита от короткого замыкания Да
Поддержка питания по интерфейсу Ethernet (802.3af, PoE) Да
Потребляемая мощность, Вт менее 3,8
Условия хранения и эксплуатации
Пыле- и влагозащищенность IP67
Виброзащищенность MIL-STD 810F
Рабочая температура, °С -40… +65
Температура хранения, °С -40… +80
Пользовательские интерфейсы
Лицевая панель приемника Вакуумный дисплей (VFD), 2 линии по 16 символов
7 кнопок для настройки
Встроенный веб-сервер Да
Защита данных
Аутентификация для веб-доступа Да
Поддержка HTTPS Да
Аутентификация для подключения к потокам данных Да
Аутентификация для подключения к потокам NTRIP Да